Environmental Monitoring and Assessment

, Volume 162, Issue 1–4, pp 355–363 | Cite as

Comparison of fecal coliform bacteria before and after wastewater treatment plant in the Izmir Bay (Eastern Aegean Sea)



The distribution of fecal coliforms was investigated and determined in Izmir Bay from 1996 to 2005. Izmir Bay severely was polluted from industrial and domestic discharges during decades. In early 2000, a wastewater treatment plant began to treat domestic and industrial wastes. This plant treats the wastes about 80% capacity after 2001. The sampling periods cover before and after treatment plant. Assessment method for determining the number of fecal coliform has evolved membrane filtrations. Maximum surface fecal coliform concentration was 4.9 × 105 cfu 100 ml − 1 in 1996–2000 period. Following the opening treatment system, fecal coliform density decreased 2.1 × 104 cfu 100 ml − 1 during 2001–2005. A continuous improvement can be sustained in the water quality if direct inflow of untreated wastewater is prevented.


Indicator bacteria Fecal coliform Wastewater Izmir Bay Eastern Aegean Sea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. APHA (1999). Standard methods for the examination of water and waste water (20th ed.). Washington, DC: American Public Health Association.Google Scholar
  2. Anderson, I. C., Rhodes, M. W., & Kator, H. I. (1979). Sublethal stress in Escherichia coli a function of salinity. Applied and Environmental Microbiology, 38, 1147–1152.Google Scholar
  3. Anderson, I. C., Rhodes, M. W., & Kator, H. I. (1983). Seasonal variation in survival of Escherichia coli exposed in situ in membrane diffusion chambers containing filtered and non filtered estuarine water. Applied and Environmental Microbiology, 45(6), 1877–1883.Google Scholar
  4. Auer, M. T., & Niehaus, S. L. (1993). Modeling faecal coliform bacteria. Field and laboratory determination of loss kinetics. Water Research, 27, 693–701. doi: 10.1016/0043-1354(93)90179-L.CrossRefGoogle Scholar
  5. Bergstein-Ben Dan, T., & Stone, L. (1991). The distribution of fecal pollution indicator bacteria in Lake Kinneret. Water Research, 25(3), 263–270. doi: 10.1016/0043-1354(91)90005-B.CrossRefGoogle Scholar
  6. Bordalo, A. A. (2003). Microbiological water quality in urban coastal beaches: The influence of water dynamics and optimization of the sampling strategy. Water Research, 37, 3233–3241. doi: 10.1016/S0043-1354(03)00152-0.CrossRefGoogle Scholar
  7. Chigbu, P., Gordon, S., & Strange, T. R. (2005). Fecal coliform bacteria disappearance rates in a north-central Gulf of Mexico estuary. Estuarine, Coastal and Shelf Science, 65, 309–318. doi: 10.1016/j.ecss.2005.05.020.CrossRefGoogle Scholar
  8. Crabill, C., Donald, R., Snelling, J., Foust, R., & Southam, G. (1999). The impact of sediment fecal coliform reservoirs on seasonal water quality in Oak Creek, Arizona. Water Research, 33, 2163–2171. doi: 10.1016/S0043-1354(98)00437-0.CrossRefGoogle Scholar
  9. Crowther, J., Kay, D., & Wyer, M. D. (2002). Faecal-indicator concentrations in waters draining lowland pastoral catchments in the UK: Relationships with land use and farming practices. Water Research, 36, 1725–1734. doi: 10.1016/S0043-1354(01)00394-3.CrossRefGoogle Scholar
  10. Esham, E. C., & Sizemore, R. K. (1998). Evaluation of two techniques: mFC and mTEC for determining distributions of fecal pollution in small, North Carolina tidal creeks. Water, Air, and Soil Pollution, 106(1/2), 179–197. doi: 10.1023/A:1004985123942.CrossRefGoogle Scholar
  11. Ferguson, C. M., Coote, B. G., Ashbolt, N. J., & Stevenson, I. M. (1996). Relationships between indicators, pathogens and water quality in an estuarine system. Water Research, 30(9), 2045–2054. doi: 10.1016/0043-1354(96)00079-6.CrossRefGoogle Scholar
  12. Field, R., & Pitt, R. E. (1990). Urban storm-induced discharge impacts: U.S. Environmental Protection Agency research program review. Water Science and Technology, 22, 1–7.Google Scholar
  13. Flint, K. P. (1987). The long-term survival of Escherichia coli in river water. The Journal of Applied Bacteriology, 63, 261–270.Google Scholar
  14. Gabutti, G., De Donno, A., Bagordo, F., & Montagna, M. T. (2000). Comparative survival of faecal and human contaminants and use of Staphylococcus aureus as an effective indicator of human pollution. Marine Pollution Bulletin, 40(8), 697–700. doi: 10.1016/S0025-326X(00)00007-2.CrossRefGoogle Scholar
  15. Gersberg, R. M., Brenner, R., Lyon, S. R., & Elkins, B. V. (1987). Survival of bacteria and viruses in municipal wastewaters applied to artificial wetlands. In K. R. Reddy & W. H. Smith (Eds.), Aquatic plants for water treatment and resource recovery (pp. 237–245). Orlando: Magnolia.Google Scholar
  16. Gersberg, R. M., Matkovits, M., Dodge, D., McPherson, T., & Boland, J. (1995). Experimental opening of a coastal California lagoon: Effect on bacteriological quality of ocean waters. Journal of Environmental Health, 58(2), 24.Google Scholar
  17. Grimes, D. J. (1980). Bacteriological water quality effects of hydraulically dredging contaminated upper Mississippi river bottom sediment. Applied and Environmental Microbiology, 39, 782–789.Google Scholar
  18. Hood, M. A., & Ness, G. E. (1982). Survival of Vibrio cholerae and Escherichia coli in estuarine waters and sediments. Applied and Environmental Microbiology, 43, 578–584.Google Scholar
  19. Hunter, C., Perkins, J., Tranter, J., & Gunn, J. (1999). Agricultural land-use effects on the indicator bacterial quality of an upland stream in the Derbyshire Peak District in the UK. Water Research, 33, 3577–3586. doi: 10.1016/S0043-1354(99)00083-4.CrossRefGoogle Scholar
  20. ISSC (1997). Interstate shellfish sanitation conference. Guide for the control of Molluscan shellfish, 1997 revision. Rockville, MD: U.S. Department of Health and Human Services, Public Health Service, Food and Drug Administration.Google Scholar
  21. Kadlec, R. H., & Knight, R. L. (1996). Treatment wetlands. Boca Roton, FL: Lewis.Google Scholar
  22. Kagalou, I., Tsimarakis, G., & Bezirtzoglou, E. (2002). Inter-relationships between bacterial and chemical variations in Lake Pamvotis e Greece. Microbial Ecology in Health and Disease, 14(1), 37–41. doi: 10.1080/089106002760002748.CrossRefGoogle Scholar
  23. Karaboz, I., Ucar, F., Eltem, R., Ozdemir, G., & Ates, M. (2003). Determination of existence and counts of pathogenic microorganisms in Izmir Bay. Journal of Fluids and Structures, 26, 1–18.Google Scholar
  24. Kelsey, R. H., Scott, G. I., Porter, D. E., Thompson, B., & Webster, L. (2003). Using multiple antibiotic resistance and land use characteristic to determine sources of fecal coliform bacterial pollution. Environmental Monitoring and Assessment, 81, 337–348. doi: 10.1023/A:1021305930858.CrossRefGoogle Scholar
  25. Kontas, A., Kucuksezgin, F., Altay, O., & Uluturhan, E. (2004). Monitoring of eutrophication and nutrient limitation in the Izmir Bay (Turkey) before and after wastewater treatment plant. Environment International, 29, 1057–1062. doi: 10.1016/S0160-4120(03)00098-9.CrossRefGoogle Scholar
  26. Kucuksezgin, F., Kontas, A., Altay, E., Uluturhan, E., & Darilmaz, E. (2006). Assessment of marine pollution in Izmir Bay: Nutrient, heavy metal and total hydrocarbon concentrations. Environment International, 32, 41–51. doi: 10.1016/j.envint.2005.04.007.CrossRefGoogle Scholar
  27. Mallin, M. A., Ensign, S. H., McIver, M. R., Shank, G. C., & Fowler, P. K. (2001). Demographic, landscape, and meteorological factors controlling the microbial pollution of coastal waters. Hydrobiologia, 460(1–3), 185–193. doi: 10.1023/A:1013169401211.CrossRefGoogle Scholar
  28. Noble, R. T., & Fuhrman, J. A. (2001). Enteroviruses detected by reverse transcriptase polymerase chain reaction from the coastal waters of Santa Monica Bay, California: Low correlation to bacterial indicator levels. Hydrobiologia, 460, 175–184. doi: 10.1023/A:1013121416891.CrossRefGoogle Scholar
  29. Reed, S. C., Crites, R. W., & Middlebrooks, E. J. (1995). Natural system for wastewater management and treatment (2nd ed.). New York, NY: McGraw-Hill.Google Scholar
  30. Rhodes, M. W., & Kator, H. (1988). Survival of Escherichia coli and Salmonella spp. in estuarine environments. Applied and Environmental Microbiology, 54(12), 2902–2907.Google Scholar
  31. Sayin, E. (2003). Physical features of the Izmir Bay. Continental Shelf Research, 23, 957–970. doi: 10.1016/S0278-4343(03)00083-9.CrossRefGoogle Scholar
  32. Stevenson, G. R., & Rychert, R. C. (1982). Bottom sediment: A reservoir of Escherichia coli in rangeland streams. Journal of Range Management, 35, 119–123. doi: 10.2307/3898537.CrossRefGoogle Scholar
  33. Sokal, R. R., & Rohlf, F. J. (1995). Biometry (3rd ed.). New York: Freeman and Co.Google Scholar
  34. Song, Z., Zheng, Z., Li, J., Sun, X., Han, X., Wang, W., et al. (2006). Seasonal and annual performance of a full-scale constructed wetland system for sewage treatment in China. Ecological Engineering, 26, 272–282. doi: 10.1016/j.ecoleng.2005.10.008.CrossRefGoogle Scholar
  35. Troussellier, M., Bonnefont, J., Courties, C., Dupray, E., Gauthier, M., Gourmelon, M., et al. (1998). Responses of enteric bacteria to environmental stresses in seawater. Oceanologica Acta, 21(6), 965–981. doi: 10.1016/S0399-1784(99)80019-X.CrossRefGoogle Scholar
  36. Xu, P., Brissaud, F., & Fazio, A. (2002). Non-steady-state modelling of fecal coliform removal in deep tertiary lagoons. Water Research, 36, 3074–3082. doi: 10.1016/S0043-1354(01)00534-6.CrossRefGoogle Scholar
  37. Yilmaz, A. A., Okus, E., & Ovez, S. (2004). Bacteriological indicators of anthropogenic impact prior to and during the recovery of water quality in an extremely polluted estuary, Golden Horn, Turkey. Marine Pollution Bulletin, 49, 951–958. doi: 10.1016/j.marpolbul.2004.06.020.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of Marine Sciences and TechnologyDEUInciraltiTurkey

Personalised recommendations