Environmental Monitoring and Assessment

, Volume 162, Issue 1–4, pp 237–250 | Cite as

Occurrence of haloacetic acids (HAAs) and trihalomethanes (THMs) in drinking water of Taiwan

  • H. H. Chang
  • H. H. Tung
  • C. C. Chao
  • G. S. Wang


In this study, water samples were collected from 86 water treatment plants for analysis of haloacetic acids (HAAs) and trihalomethanes (THMs) from February to March, 2007 and from July to August, 2007. Both seasonal and geographical variations of disinfection by-products (DBPs) in drinking water of Taiwan were presented. The results showed that the five HAA concentrations (HAA5) were 1.0–38.9 μg/L in the winter and 0.2–46.7 μg/L in the summer; and the total THMs were ND-99.4 μg/L in the winter and ND-133.2 μg/L in the summer. For samples taken from the main Taiwan island, dichloroacetic acid (29.4–31.7%) and trichloroacetic acid (25.3–27.6%) were the two major HAA species, and trichloromethane was the major THM species (49.9–62.2%) in finished water. For water treatment plants located on the offshore islands outside of Taiwan, high bromide concentration was found in raw water, and higher percentage of brominated THMs and HAAs were formed in the overall formation. A statistically significant (P < 0.005) logarithmic linear regression model was found to be useful to describe the correlations between TTHM and HAA5 or nine HAAs (HAA5 = 1.219 ×TTHM 0.754, R 2 = 0.658; HAA9 = 1.824 ×TTHM 0.735, R 2 = 0.678). No apparent difference was observed for DBPs concentrations between finished water and distribution samples in this study.


Trihalomethanes Haloacetic acids Drinking water Disinfection by-products 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Austin, E. W., Parrish, J. M., Kinder, D. H., & Bull, R. J. (1996). Lipid peroxidation and formation of 8-hydroxydeoxyguanosine from acute doses of halogenated acetic acids. Fundamental and Applied Toxicology, 31(1), 77–82. doi: 10.1006/faat.1996.0078.CrossRefGoogle Scholar
  2. Baribeau, H., Krasner, S. W., Chinn, R., & Singer, P. C. (2005). Impact of biomass on the stability of HAAs and THMs in a simulated distribution system. Journal—American Water Works Association, 97(2), 69–81.Google Scholar
  3. Bove, F. J., Fulcomer, M. C., Klotz, J. B., Esmart, J., Dufficy, E. M., & Savrin, J. E. (1995). Public drinking-water contamination and birth outcomes. American Journal of Epidemiology, 141(9), 850–862.Google Scholar
  4. Cantor, K. P., Hoover, R., Mason, T. J., & McCabe, L. J. (1978). Associations of cancer mortality with halomethanes in drinking-water. Journal of the National Cancer Institute, 61(4), 979–985.Google Scholar
  5. Chang, H. H. (2004). Analysis and distribution of haloacetic acids in drinking water of Taiwan (p. 124). Institute of Environmental Health, College of Public Health. Taipei, Taiwan: National Taiwan University.Google Scholar
  6. Chiang, P. C., & Chang, Y. Y. (2003). The evaluation of microbial and potability standards in drinking water quality standards. Taiwan EPA Project Report, EPA-92-J105–02–101, Taiwan (in Chinese).Google Scholar
  7. Cicmanec, J. L., Condie, L. W., Olson, G. R., & Wang, S. R. (1991). 90-Day toxicity study of dichloroacetate in dogs. Fundamental and Applied Toxicology, 17(2), 376–389. doi: 10.1016/0272-0590(91)90227-U.CrossRefGoogle Scholar
  8. Elshorbagy, W. E., Abu-Qdais, H., & Elsheamy, M. K. (2000). Simulation of THM species in water distribution systems. Water Research, 34(13), 3431–3439. doi: 10.1016/S0043–1354(00)00231–1.CrossRefGoogle Scholar
  9. Giller, S., LeCurieux, F., Erb, F., & Marzin, D. (1997). Comparative genotoxicity of halogenated acetic acids found in drinking water. Mutagenesis, 12(5), 321–328. doi: 10.1093/mutage/12.5.321.CrossRefGoogle Scholar
  10. Johnson, P. D., Dawson, B. V., & Goldberg, S. J. (1998). Cardiac teratogenicity of trichloroethylene metabolites. Journal of the American College of Cardiology, 32(2), 540–545. doi: 10.1016/S0735-1097(98)00232-0.CrossRefGoogle Scholar
  11. Kato-Weinstein, J., Lingohr, M. K., Orner, G. A., Thrall, B. D., & Bull, R. J. (1998). Effects of dichloroacetate on glycogen metabolism in B6C3F1 mice. Toxicology, 130(2–3), 141–154. doi: 10.1016/S0300-483X(98)00106-1.CrossRefGoogle Scholar
  12. Kramer, M. D., Lynch, C. F., Isacson, P., & Hanson, J. W. (1992). The association of waterborne chloroform with intrauterine growth-retardation. Epidemiology (Cambridge, Mass.), 3(5), 407–413. doi: 10.1097/00001648-199209000-00005.Google Scholar
  13. Krasner, S. W., Weinberg, H. S., Richardson, S. D., Pastor, S. J., Chinn, R., Sclimenti, M. J., et al. (2006). Occurrence of a new generation of disinfection byproducts. Environmental Science & Technology, 40(23), 7175–7185. doi: 10.1021/es060353j.CrossRefGoogle Scholar
  14. Linder, R. E., Klinefelter, G. R., Strader, L. F., Suarez, J. D., & Dyer, C. J. (1994). Acute spermatogenic effects of bromoacetic acids. Fundamental and Applied Toxicology, 22(3), 422–430. doi: 10.1006/faat.1994.1048.CrossRefGoogle Scholar
  15. Nelson, G. M., Swank, A. E., Brooks, L. R., Bailey, K. C., & George, S. E. (2001). Metabolism, microflora effects, and genotoxicity in haloacetic acid-treated cultures of rat cecal microbiota. Toxicological Sciences, 60(2), 232–241. doi: 10.1093/toxsci/60.2.232.CrossRefGoogle Scholar
  16. Parrish, J. M., Austin, E. W., Stevens, D. K., Kinder, D. H., & Bull, R. J. (1996). Haloacetate-induced oxidative damage to DNA in the liver of male B6C3F1 mice. Toxicology, 110(1–3), 103–111. doi: 10.1016/0300-483X(96)03342–2.CrossRefGoogle Scholar
  17. Rathbun, R. E. (1996). Regression equations for disinfection by-products for the Mississippi, Ohio and Missouri rivers. The Science of the Total Environment, 191(3), 235–244. doi: 10.1016/S0048-9697(96)05266-7.CrossRefGoogle Scholar
  18. Rodriguez, M. J., Serodes, J., & Roy, D. (2007a). Formation and fate of haloacetic acids (HAAs) within the water treatment plant. Water Research, 41(18), 4222–4232. doi: 10.1016/j.watres.2007.05.048.CrossRefGoogle Scholar
  19. Rodriguez, M. J., Serodes, J. B., Levallois, P., & Prouix, F. (2007b). Chlorinated disinfection by-products in drinking water according to source, treatment, season, and distribution location. Journal of Environmental Engineering and Science, 6(4), 355–365. doi: 10.1139/S06-055.CrossRefGoogle Scholar
  20. Rook, J. J. (1974). Formation of haloforms during chlorination of naturals waters. Journal Water Treatment and Examination, 23(3), 234–243.Google Scholar
  21. Sadiq, R., & Rodriguez, M. J. (2004). Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: A review. The Science of the Total Environment, 321(1–3), 21–46. doi: 10.1016/j.scitotenv.2003.05.001.Google Scholar
  22. Shoaf, D. R., & Singer, P. C. (2007). An analysis of monitoring data for the stage 1 disinfectants/disinfection byproducts rule. Journal—American Water Works Association, 99(10), 69–80.Google Scholar
  23. Stacpoole, P. W. (1989). The pharmacology of dichloroacetate. Metabolism: Clinical and Experimental, 38(11), 1124–1144. doi: 10.1016/0026-0495(89)90051-6.Google Scholar
  24. Toth, G. P., Kelty, K. C., George, E. L., Read, E. J., & Smith, M. K. (1992). Adverse male reproductive effects following subchronic exposure of rats to sodium dichloroacetate. Fundamental and Applied Toxicology, 19(1), 57–63. doi: 10.1016/0272-0590(92)90028-G.CrossRefGoogle Scholar
  25. TWEPA (2007). River Water Quality Statistics. In Natonal Environmental Water Quality Information Network – 2007 Annual Report. Taiwan Environmental Protection Agency. (in Chinese).
  26. Urano, K., Wada, H., & Takemasa, T. (1983). Empirical rate-equation for trihalomethane formation with chlorination of humic substances in water. Water Research, 17(12), 1797–1802. doi: 10.1016/0043-1354(83)90202-6.CrossRefGoogle Scholar
  27. Urbansky, E. T. (2000). Techniques and methods for the determination of haloacetic acids in potable water. Journal of Environmental Monitoring, 2(4), 285–291. doi: 10.1039/b002977g.CrossRefGoogle Scholar
  28. USEPA (1999b, EPA 815-R-99–013). Disinfection profiling and benchmarking guidance manual. In Disinfection profiling and benchmarking guidance manual. U.S. Environmental Protection Agency.Google Scholar
  29. USEPA (2001a, EPA 816-F-01-007). National primary drinking water standards. In National primary drinking water standards. U.S. Environmental Protection Agency.Google Scholar
  30. USEPA (2003, EPA 815-B-03-002). Method 552.3. Determination of haloacetic acids and dalapon in drinking water by liquid–liquid microextraction, derivatization, and gas chromatography with electron capture detection. In Determination of haloacetic acids and dalapon in drinking water by liquid–liquid microextraction, derivatization, and gas chromatography with electron capture detection. U.S. Environmental Protection Agency, Method 552.3.Google Scholar
  31. Uyak, V., Ozdemir, K., & Toroz, I. (2007). Multiple linear regression modeling of disinfection by-products formation in Istanbul drinking water reservoirs. The Science of the Total Environment, 378(3), 269–280. doi: 10.1016/j.scitotenv.2007.02.041.CrossRefGoogle Scholar
  32. Villanueva, C. M., Kogevinas, M., & Grimalt, J. O. (2003). Haloacetic acids and trihalomethanes in finished drinking waters from heterogeneous sources. Water Research, 37(4), 953–958. doi: 10.1016/S0043-1354(02)00411-6.CrossRefGoogle Scholar
  33. Waller, K., Swan, S. H., DeLorenze, G. & Hopkins, B. (1998). Trihalomethanes in drinking water and spontaneous abortion. Epidemiology (Cambridge, Mass.), 9(2), 134–140. doi: 10.1097/00001648-199803000-00006.Google Scholar
  34. Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., & Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology, 37(20), 4702–4708. doi: 10.1021/es030360x.CrossRefGoogle Scholar
  35. WHO (1993). Guidelines for drinking-water quality. In Guidelines for drinking-water quality. Geneva: World Health OrganizationGoogle Scholar
  36. Xie, S. G., Wen, D. H., Shi, D. W., & Tang, X. Y. (2006). Reduction of precursors of chlorination by-products in drinking water using fluidized-bed biofilm reactor at low temperature. Biomedical and Environmental Sciences, 19(5), 360–366.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • H. H. Chang
    • 1
  • H. H. Tung
    • 2
  • C. C. Chao
    • 2
  • G. S. Wang
    • 1
  1. 1.Institute of Environmental Health, College of Public HealthNational Taiwan UniversityTaipeiRepublic of China
  2. 2.Institute of Environmental Engineering, College of EngineeringNational Taiwan UniversityTaipeiRepublic of China

Personalised recommendations