Environmental Monitoring and Assessment

, Volume 162, Issue 1–4, pp 21–35 | Cite as

Polycyclic aromatic hydrocarbon contamination in stormwater detention pond sediments in coastal South Carolina

  • John E. Weinstein
  • Kevin D. Crawford
  • Thomas R. Garner


The purpose of this study was to characterize the polycyclic aromatic hydrocarbon (PAH) contamination in the sediments of stormwater detention ponds in coastal South Carolina. Levels of the sum of PAH analytes were significantly higher in the sediments of commercial ponds compared to that of reference, golf course, low-density residential, and high-density residential ponds. Isomer ratio analysis suggested that the predominant source of PAHs were pyrogenic; however, many ponds had a PAH signature consistent with mixed uncombusted and combusted PAH sources. PAH levels in these sediments could be modeled using both pond drainage area and pond surface area. These results demonstrate that the sediment from most commercial ponds, and a few residential and golf course ponds, were moderately contaminated with PAHs. PAH levels in these contaminated ponds exceeded between 42% and 75% of the ecological screening values for individual PAH analytes established by US EPA Region IV, suggesting that they may pose a toxicological risk to wildlife.


Sediment PAH Detention ponds Contaminants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, C. L., & Gibbons, C. J. (1996). Impervious surface coverage: The emergence of a key environmental indicator. Journal of the American Planning Association. American Planning Association, 62(2), 243–258. doi: 10.1080/01944369608975688.CrossRefGoogle Scholar
  2. Atlanta Regional Commission (2001). Georgia stormwater management manual: Technical Handbook (Vol. 2). Accessed 20 June 2008.
  3. Brown, J. N., & Peake, B. M. (2006). Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff. The Science of the Total Environment, 359(1–3), 145–155. doi: 10.1016/j.scitotenv.2005.05.016.Google Scholar
  4. De Luca, G., Furesi, A., Leardi, R., Micera, G., Panzanelli, A., Piu, P. C., et al. (2005). Nature, distribution and origin of polycyclic aromatic hydrocarbons (PAHs) in the sediments of Olbia harbor (Northern Sardinia, Italy). Marine Pollution Bulletin, 50(11), 1223–1232. doi: 10.1016/j.marpolbul.2005.04.021.CrossRefGoogle Scholar
  5. Fernandez, M., & Hutchinson, C. B. (1993). Hydrogeology and chemical quality of water and bottom sediment at three stormwater detention ponds, 92–4139. Pinellas County: USGS Water Investigations Report.Google Scholar
  6. Garner, T. R., Weinstein, J. E., & Sanger, D. M. (2009). Polycyclic aromatic hydrocarbon contamination in South Carolina salt marsh–tidal creek systems: Relationships among sediments, biota, and watershed land use. Archives of Environmental Contamination and Toxicology. doi: 10.1007/s00244-008-9256-9.
  7. Holland, A. F., Sanger, D. M., Gawle, C. P., Lerberg, S. B., Santiago, M. S., Riekerk, G. H. M., et al. (2004). Linkages between tidal creek ecosystems and the landscape and demographic attributes of their watersheds. Journal of Experimental Marine Biology and Ecology, 298(2), 151–178. doi: 10.1016/S0022-0981(03)00357-5.CrossRefGoogle Scholar
  8. Kamalakkannan, R., Zettel, V., Goubatchev, A., Stead-Dexter, K., & Ward, N. (2004). Chemical (polycyclic aromatic hydrocarbon and heavy metal) levels in contaminated stormwater and sediments from a motorway dry detention pond drainage system. Journal of Environmental Monitoring, 6, 175–181. doi: 10.1039/b309384k.CrossRefGoogle Scholar
  9. Kayali-Sayadi, M. N., Rubio-Barroso, S., García-Iranzo, R., & Polo-Díez, L. M. (2000). Determination of selected polycyclic aromatic hydrocarbons in toasted bread by supercritical fluid extraction and HPLC with fluorimetric detection. Journal of Liquid Chromatography & Related Technologies, 23(12), 1913–1925. doi: 10.1081/JLC-100100462.CrossRefGoogle Scholar
  10. Long, E. R., & Morgan, L. G. (1991). The potential for biological effects of sediment-sorbed contaminants tested in the national status and trends program. NOAA Technical Memorandum NOS OMA 52.Google Scholar
  11. Long, E. R., MacDonald, D. M., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19(1), 81–97. doi: 10.1007/BF02472006.CrossRefGoogle Scholar
  12. MacDonald, D. D. (1994). Approach to the assessment of sediment quality in Florida coastal waters. Florida Department of Environmental Protection.Google Scholar
  13. Marsalek, J., & Marsalek, P. M. (1997). Characteristics of sediments from a stormwater management pond. Water Science and Technology, 36(8), 117–122. doi: 10.1016/S0273-1223(97)00610-0.CrossRefGoogle Scholar
  14. Marsalek, J., Rochfort, Q., Grapentine, L., & Brownlee, B. (2002). Assessment of stormwater impacts on an urban stream with a detention pond. Water Science and Technology, 45(3), 255–263.Google Scholar
  15. Mo, C. -H., Cai, Q. -Y., Li, Y. -H., & Zeng, Q. -Y. (2008). Occurrence of priority organic pollutants in the fertilizers, China. Journal of Hazardous Materials, 152(3), 1208–1213. doi: 10.1016/j.jhazmat.2007.07.105.CrossRefGoogle Scholar
  16. Ngabe, B., Bidleman, T. F., & Scott, G. I. (2000). Polycyclic aromatic hydrocarbons in storm water runoff from urban and coastal South Carolina. The Science of the Total Environment, 255(1–3), 1–9. doi: 10.1016/S0048-9697(00)00422-8.CrossRefGoogle Scholar
  17. Parker, J. T. C., Fossum, K. D., & Ingersoll, T. L. (2000). Chemical characteristics of urban stormwater sediments and implications for environmental management, Maricopa County, Arizona. Environmental Management, 26(1), 99–115. doi: 10.1007/s002670010074.CrossRefGoogle Scholar
  18. Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual Review of Ecology and Systematics, 32, 333–365. doi: 10.1146/annurev.ecolsys.32.081501.114040.CrossRefGoogle Scholar
  19. Plumb, R. H. (1981). Procedures for handling and chemical analysis of sediment and water samples. Vicksburg: Environmental Laboratory, U.S. Army Waterways Experiment Station.Google Scholar
  20. Polta, R., Balogh, S., & Craft-Reardon, A. (2006). Characterization of stormwater pond sediments: Final project report. Metropolitan Council Environmental Services, Environmental Quality Assurance Department.Google Scholar
  21. Reynolds, W., McLeod, A., Hajjar, L., & Rodgers, T. (2005). A citizen’s guide to stormwater pond maintenance in South Carolina (p. CR-003069). Columbia: South Carolina Department of Health and Environmental Control.Google Scholar
  22. Siewicki, T. C., Pullaro, T., Pan, W., McDaniel, S., Glenn, R., & Stewart, J. (2007). Models of total and presumed wildlife sources of fecal coliform bacteria in coastal ponds. Journal of Environmental Management, 82(1), 120–132. doi: 10.1016/j.jenvman.2005.12.010.CrossRefGoogle Scholar
  23. Sun, F. S., Littlejohn, D., & Gibson, M. D. (1998). Ultrasonication extraction and solid phase extraction clean-up for determination of US EPA 16 priority pollutant polycyclic aromatic hydrocarbons in soils by reversed-phase liquid chromatography with ultraviolet absorption detection. Analytica Chimica Acta, 364(1–3), 1–11. doi: 10.1016/S0003-2670(98)00186-X.CrossRefGoogle Scholar
  24. Urbonas, B., & Stahre, P. (1993). Stormwater: Best management practices and detention for water quality, drainage, and CSP management (pp 39–64). Upper Saddle River: Prentice Hall.Google Scholar
  25. US EPA (1995). Economic benefits of runoff controls. Office of Wetlands, Oceans and Watersheds, US EPA, Washington, DC. EPA-841-S-95-002.Google Scholar
  26. US EPA (2001). Supplemental Guidance to RAGS: Region 4 Bulletins, Ecological Risk Assessment. Originally published November 1995. Website version last updated November 30, 2001:
  27. Van Metre, P. C., Mahler, B. J., & Furlong, E. T. (2000). Urban sprawl leaves its PAH signature. Environmental Science & Technology, 34(10), 4064–4070. doi: 10.1021/es991007n.CrossRefGoogle Scholar
  28. Walker, S. E., Dickhut, R. M., Chisolm-Brause, C., Sylva, S., & Reddy, C. M. (2005). Molecular and isotopic identification of PAH sources in a highly industrialized urban estuary. Organic Geochemistry, 36(4), 619–613. doi: 10.1016/j.orggeochem.2004.10.012.CrossRefGoogle Scholar
  29. Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River Basin: A critical appraisal of PAH Ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489–515. doi: 10.1016/S0146-6380(02)00002-5.CrossRefGoogle Scholar
  30. Zheng, G. J., Man, B. K., Lam, J. C., Lam, M. H., & Lam, P. K. (2002). Distribution and sources of polycyclic aromatic hydrocarbons in the sediment of a sub-tropical coastal wetland. Water Research, 36(6), 1457–1468. doi: 10.1016/S0043-1354(01)00363-3.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • John E. Weinstein
    • 1
  • Kevin D. Crawford
    • 2
  • Thomas R. Garner
    • 1
  1. 1.Department of BiologyThe CitadelCharlestonUSA
  2. 2.Department of ChemistryUniversity of Wisconsin-OshkoshOshkoshUSA

Personalised recommendations