Skip to main content
Log in

Polycyclic aromatic hydrocarbon contamination in stormwater detention pond sediments in coastal South Carolina

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The purpose of this study was to characterize the polycyclic aromatic hydrocarbon (PAH) contamination in the sediments of stormwater detention ponds in coastal South Carolina. Levels of the sum of PAH analytes were significantly higher in the sediments of commercial ponds compared to that of reference, golf course, low-density residential, and high-density residential ponds. Isomer ratio analysis suggested that the predominant source of PAHs were pyrogenic; however, many ponds had a PAH signature consistent with mixed uncombusted and combusted PAH sources. PAH levels in these sediments could be modeled using both pond drainage area and pond surface area. These results demonstrate that the sediment from most commercial ponds, and a few residential and golf course ponds, were moderately contaminated with PAHs. PAH levels in these contaminated ponds exceeded between 42% and 75% of the ecological screening values for individual PAH analytes established by US EPA Region IV, suggesting that they may pose a toxicological risk to wildlife.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, C. L., & Gibbons, C. J. (1996). Impervious surface coverage: The emergence of a key environmental indicator. Journal of the American Planning Association. American Planning Association, 62(2), 243–258. doi:10.1080/01944369608975688.

    Article  Google Scholar 

  • Atlanta Regional Commission (2001). Georgia stormwater management manual: Technical Handbook (Vol. 2). http://www.georgiastormwater.com/vol1/gsmmvol1.pdf. Accessed 20 June 2008.

  • Brown, J. N., & Peake, B. M. (2006). Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff. The Science of the Total Environment, 359(1–3), 145–155. doi:10.1016/j.scitotenv.2005.05.016.

    CAS  Google Scholar 

  • De Luca, G., Furesi, A., Leardi, R., Micera, G., Panzanelli, A., Piu, P. C., et al. (2005). Nature, distribution and origin of polycyclic aromatic hydrocarbons (PAHs) in the sediments of Olbia harbor (Northern Sardinia, Italy). Marine Pollution Bulletin, 50(11), 1223–1232. doi:10.1016/j.marpolbul.2005.04.021.

    Article  CAS  Google Scholar 

  • Fernandez, M., & Hutchinson, C. B. (1993). Hydrogeology and chemical quality of water and bottom sediment at three stormwater detention ponds, 92–4139. Pinellas County: USGS Water Investigations Report.

    Google Scholar 

  • Garner, T. R., Weinstein, J. E., & Sanger, D. M. (2009). Polycyclic aromatic hydrocarbon contamination in South Carolina salt marsh–tidal creek systems: Relationships among sediments, biota, and watershed land use. Archives of Environmental Contamination and Toxicology. doi:10.1007/s00244-008-9256-9.

  • Holland, A. F., Sanger, D. M., Gawle, C. P., Lerberg, S. B., Santiago, M. S., Riekerk, G. H. M., et al. (2004). Linkages between tidal creek ecosystems and the landscape and demographic attributes of their watersheds. Journal of Experimental Marine Biology and Ecology, 298(2), 151–178. doi:10.1016/S0022-0981(03)00357-5.

    Article  Google Scholar 

  • Kamalakkannan, R., Zettel, V., Goubatchev, A., Stead-Dexter, K., & Ward, N. (2004). Chemical (polycyclic aromatic hydrocarbon and heavy metal) levels in contaminated stormwater and sediments from a motorway dry detention pond drainage system. Journal of Environmental Monitoring, 6, 175–181. doi:10.1039/b309384k.

    Article  CAS  Google Scholar 

  • Kayali-Sayadi, M. N., Rubio-Barroso, S., García-Iranzo, R., & Polo-Díez, L. M. (2000). Determination of selected polycyclic aromatic hydrocarbons in toasted bread by supercritical fluid extraction and HPLC with fluorimetric detection. Journal of Liquid Chromatography & Related Technologies, 23(12), 1913–1925. doi:10.1081/JLC-100100462.

    Article  CAS  Google Scholar 

  • Long, E. R., & Morgan, L. G. (1991). The potential for biological effects of sediment-sorbed contaminants tested in the national status and trends program. NOAA Technical Memorandum NOS OMA 52.

  • Long, E. R., MacDonald, D. M., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19(1), 81–97. doi:10.1007/BF02472006.

    Article  Google Scholar 

  • MacDonald, D. D. (1994). Approach to the assessment of sediment quality in Florida coastal waters. Florida Department of Environmental Protection.

  • Marsalek, J., & Marsalek, P. M. (1997). Characteristics of sediments from a stormwater management pond. Water Science and Technology, 36(8), 117–122. doi:10.1016/S0273-1223(97)00610-0.

    Article  CAS  Google Scholar 

  • Marsalek, J., Rochfort, Q., Grapentine, L., & Brownlee, B. (2002). Assessment of stormwater impacts on an urban stream with a detention pond. Water Science and Technology, 45(3), 255–263.

    CAS  Google Scholar 

  • Mo, C. -H., Cai, Q. -Y., Li, Y. -H., & Zeng, Q. -Y. (2008). Occurrence of priority organic pollutants in the fertilizers, China. Journal of Hazardous Materials, 152(3), 1208–1213. doi:10.1016/j.jhazmat.2007.07.105.

    Article  CAS  Google Scholar 

  • Ngabe, B., Bidleman, T. F., & Scott, G. I. (2000). Polycyclic aromatic hydrocarbons in storm water runoff from urban and coastal South Carolina. The Science of the Total Environment, 255(1–3), 1–9. doi:10.1016/S0048-9697(00)00422-8.

    Article  CAS  Google Scholar 

  • Parker, J. T. C., Fossum, K. D., & Ingersoll, T. L. (2000). Chemical characteristics of urban stormwater sediments and implications for environmental management, Maricopa County, Arizona. Environmental Management, 26(1), 99–115. doi:10.1007/s002670010074.

    Article  Google Scholar 

  • Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual Review of Ecology and Systematics, 32, 333–365. doi:10.1146/annurev.ecolsys.32.081501.114040.

    Article  Google Scholar 

  • Plumb, R. H. (1981). Procedures for handling and chemical analysis of sediment and water samples. Vicksburg: Environmental Laboratory, U.S. Army Waterways Experiment Station.

    Google Scholar 

  • Polta, R., Balogh, S., & Craft-Reardon, A. (2006). Characterization of stormwater pond sediments: Final project report. Metropolitan Council Environmental Services, Environmental Quality Assurance Department.

  • Reynolds, W., McLeod, A., Hajjar, L., & Rodgers, T. (2005). A citizen’s guide to stormwater pond maintenance in South Carolina (p. CR-003069). Columbia: South Carolina Department of Health and Environmental Control.

    Google Scholar 

  • Siewicki, T. C., Pullaro, T., Pan, W., McDaniel, S., Glenn, R., & Stewart, J. (2007). Models of total and presumed wildlife sources of fecal coliform bacteria in coastal ponds. Journal of Environmental Management, 82(1), 120–132. doi:10.1016/j.jenvman.2005.12.010.

    Article  CAS  Google Scholar 

  • Sun, F. S., Littlejohn, D., & Gibson, M. D. (1998). Ultrasonication extraction and solid phase extraction clean-up for determination of US EPA 16 priority pollutant polycyclic aromatic hydrocarbons in soils by reversed-phase liquid chromatography with ultraviolet absorption detection. Analytica Chimica Acta, 364(1–3), 1–11. doi:10.1016/S0003-2670(98)00186-X.

    Article  CAS  Google Scholar 

  • Urbonas, B., & Stahre, P. (1993). Stormwater: Best management practices and detention for water quality, drainage, and CSP management (pp 39–64). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • US EPA (1995). Economic benefits of runoff controls. Office of Wetlands, Oceans and Watersheds, US EPA, Washington, DC. EPA-841-S-95-002.

  • US EPA (2001). Supplemental Guidance to RAGS: Region 4 Bulletins, Ecological Risk Assessment. Originally published November 1995. Website version last updated November 30, 2001: http://www.epa.gov/region4/waste/ots/ecolbul.htm.

  • Van Metre, P. C., Mahler, B. J., & Furlong, E. T. (2000). Urban sprawl leaves its PAH signature. Environmental Science & Technology, 34(10), 4064–4070. doi:10.1021/es991007n.

    Article  CAS  Google Scholar 

  • Walker, S. E., Dickhut, R. M., Chisolm-Brause, C., Sylva, S., & Reddy, C. M. (2005). Molecular and isotopic identification of PAH sources in a highly industrialized urban estuary. Organic Geochemistry, 36(4), 619–613. doi:10.1016/j.orggeochem.2004.10.012.

    Article  CAS  Google Scholar 

  • Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River Basin: A critical appraisal of PAH Ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489–515. doi:10.1016/S0146-6380(02)00002-5.

    Article  CAS  Google Scholar 

  • Zheng, G. J., Man, B. K., Lam, J. C., Lam, M. H., & Lam, P. K. (2002). Distribution and sources of polycyclic aromatic hydrocarbons in the sediment of a sub-tropical coastal wetland. Water Research, 36(6), 1457–1468. doi:10.1016/S0043-1354(01)00363-3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Weinstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinstein, J.E., Crawford, K.D. & Garner, T.R. Polycyclic aromatic hydrocarbon contamination in stormwater detention pond sediments in coastal South Carolina. Environ Monit Assess 162, 21–35 (2010). https://doi.org/10.1007/s10661-009-0773-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0773-4

Keywords

Navigation