Skip to main content
Log in

Efficiencies of different microbial parameters as indicator to assess slight metal pollutions in a farm field near a gold mining area

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In order to monitor changes in the concentrations of metals in the soil, different microbial indices such as BIOLOG®, microbial carbon (Cmic), basal respiration, and culturable microbe’s most probable number were used. We compared these methods and wanted to discover which method was the best at measuring slight changes in the amounts of heavy metals. Factor analyses were applied to the BIOLOG® data and metal concentrations so the combined effects of heavy metals on microbes could be analyzed via statistical data reduction and the distribution patterns of metal concentration could also be revealed. The results showed that the BIOLOG® method could barely detect subtle characteristic changes in the soil samples, while the Cmic method was more sensitive. Furthermore, different heavy metals did not have the same origin/source, and their effects on microbial indices should be analyzed separately. Significant positive correlations between Cmic and metals were observed and suggested the limitation of using traditional microbial parameters as metal pollution indicators. Among all the soil characteristics in our study, pH seemed to be the most active abiotic factor that affected microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J. P. E., & Domsch, K. H. (1978). A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology & Biochemistry, 10, 215–221. doi:10.1016/0038-0717(78)90099-8.

    Article  CAS  Google Scholar 

  • Brookes, P. C. (1995). The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils, 19, 269–279.

    Article  CAS  Google Scholar 

  • Broos, K., Macdonald, L. M. J., Warne, M. S., Heemsbergen, D. A., Barnes, M. B., Bell, M. et al. (2007). Limitations of soil microbial biomass carbon as an indicator of soil pollution in the field. Soil Biology & Biochemistry, 39, 2693–2695. doi:10.1016/j.soilbio.2007.05.014.

    Article  CAS  Google Scholar 

  • Campbell, C. D., Grayston, S. J., & Hirst, D. J. (1997). Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities. Journal of Microbiological Methods, 30, 33–41. doi:10.1016/S0167-7012(97)00041-9.

    Article  Google Scholar 

  • Chaperon, S., & Sauve, S. (2007). Toxicity interaction of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenase activities in soils. Soil Biology & Biochemistry, 39, 2329–2338. doi:10.1016/j.soilbio.2007.04.004.

    Article  CAS  Google Scholar 

  • Demoling, L. A., & Baath, E. (2008). Use of pollution-induced community tolerance of the bacterial community to detect phenol toxicity in soil. Environmental Toxicology and Chemistry, 27, 334–340. doi:10.1897/07-289R.1.

    Article  CAS  Google Scholar 

  • Dong, M. (1997). Survey, observation and analysis of terrestrial biocommunities. Beijing: Standard Press of China.

    Google Scholar 

  • Eleiwa, M. M. E. (2004). Effect of different concentrations of zinc or cadmium on Vigna sinensis plants in presence or absence of arbuscular mycorrhizal fungi and rhizobia. Egyptian Journal of Soil Science, 44, 385–405.

    CAS  Google Scholar 

  • Ellis, R. J., Neish, B., Trett, M. W., Best, J. G., Weightman, A. J., Morgan, P., et al. (2001). Comparison of microbial and meiofaunal community analyses for determining impact of heavy metal contamination. Journal of Microbiological Methods, 45, 171–185. doi:10.1016/S0167-7012(01)00245-7.

    Article  CAS  Google Scholar 

  • Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an ecological classification of soil bacteria. Ecology (Washington D C), 88, 1354–1364.

    Google Scholar 

  • Garland, J. L., & Mills, A. L. (1991). Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology, 57, 2151–2159.

    Google Scholar 

  • Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology & Biochemistry, 30, 1389–1414. doi:10.1016/S0038-0717(97)00270-8.

    Article  CAS  Google Scholar 

  • Hitzl, W., Henrich, M., Kessel, M., & Insam, H. (1997). Application of multivariate analysis of variance and related techniques in soil studies with substrate utilization tests. Journal of Microbiological Methods, 30, 81–89. doi:10.1016/S0167-7012(97)00047-X.

    Article  CAS  Google Scholar 

  • Hu, Q., Qi, H. Y., Zeng, J. H., & Zhang, H. X. (2007). Bacterial diversity in soils around a lead and zinc mine. Journal of Environmental Sciences (China), 19, 74–79. doi:10.1016/S1001-0742(07)60012-6.

    CAS  Google Scholar 

  • Jansen, E., Michels, M., Til, M., & Doelman, P. (1994). Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity-resistance index, an ecologically relevant parameter. Biology and Fertility of Soils, 17, 177–184. doi:10.1007/BF00336319.

    Article  Google Scholar 

  • Konopka, A., Oliver, L., & Turco, R. F. Jr. (1998). The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microbial Ecology, 35, 103–115. doi:10.1007/s002489900065.

    Article  CAS  Google Scholar 

  • Lazzaro, A., Widmer, F., Sperisen, C., & Frey, B. (2008). Identification of dominant bacterial phylotypes in a cadmium-treated forest soil. FEMS Microbiology Ecology, 63, 143–155.

    Article  CAS  Google Scholar 

  • Li, W. H., Zhang, C. B., Gao, G. J., Zan, Q. J., & Yang, Z. Y. (2007). Relationship between Mikania micrantha invasion and soil microbial biomass, respiration and functional diversity. Plant and Soil, 296, 197–207. doi:10.1007/s11104-007-9310-9.

    Article  CAS  Google Scholar 

  • Liao, M., Chen, C. L., & Huang, C. Y. (2005). Effect of heavy metals on soil microbial activity and diversity in a reclaimed mining wasteland of red soil area. Journal of Environmental Sciences (China), 17, 832–837. doi:10.1016/j.ecoenv.2005.12.013.

    CAS  Google Scholar 

  • Liao, M., & Xie, X. M. (2007). Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area. Ecotoxicology and Environmental Safety, 66, 217–223.

    Article  CAS  Google Scholar 

  • Lu, R. K. (2000). The analysis method of soil agricultural chemistry. (pp. 22–28,106–109) Chinese Society of Soil Science. China Agricultural Science and Technology Publishing Company. (in Chinese).

  • National Environmental Protection Agency. (1995). National environmental quality standard of soils—China (pp. 2–3).

  • Niklinska, M., Chodak, M., & Laskowski, R. (2005). Characterization of the forest humus microbial community in a heavy metal polluted area. Soil Biology & Biochemistry, 37, 2185–2194. doi:10.1016/j.soilbio.2005.03.020.

    Article  CAS  Google Scholar 

  • Nordgren, A., Kauri, T., Baath, E., & Soderstrom, B. (1986). Soil microbial activity, mycelial lengths and physiological groups of bacteria in a heavy metal polluted area. Environmental Pollution Series A: Ecological and Biological, 41, 89–100.

    Article  CAS  Google Scholar 

  • Pennanen, T. (2001). Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH—a summary of the use of phospholipid fatty acids, Biolog(R) and 3H-thymidine incorporation methods in field studies. Geoderma, 100, 91–126. doi:10.1016/S0016-7061(00)00082-3.

    Article  CAS  Google Scholar 

  • Pennanen, T., Perkiomaki, J., Kiikkila, O., Vanhala, P., Neuvonen, S., & Fritze, H. (1998). Prolonged, simulated acid rain and heavy metal deposition: Separated and combined effects on forest soil microbial community structure. FEMS Microbiology Ecology, 27, 291–300. doi:10.1111/j.1574-6941.1998.tb00545.x.

    Article  CAS  Google Scholar 

  • Preston-Mafham, J., Boddy, L., & Randerson, P. F. (2002). Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles—a critique. FEMS Microbiology Ecology, 42, 1–14.

    CAS  Google Scholar 

  • Sandaa, R. A., Torsvik, V., & Enger, O. (2001). Influence of long-term heavy-metal contamination on microbial communities in soil. Soil Biology & Biochemistry, 33, 287–295. doi:10.1016/S0038-0717(00)00139-5.

    Article  CAS  Google Scholar 

  • Sandaa, R. A., Torsvik, V., Enger, O., Daae, F. L., Castberg, T., & Hahn, D. (1999). Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiology Ecology, 30, 237–251. doi:10.1111/j.1574-6941.1999.tb00652.x.

    Article  CAS  Google Scholar 

  • Sardinha, M., Muller, T., Schmeisky, H., & Joergensen, R. G. (2003). Microbial performance in soils along a salinity gradient under acidic conditions. Applied Soil Ecology, 23, 237–244. doi:10.1016/S0929-1393(03)00027-1.

    Article  Google Scholar 

  • Schimel, J., Balser, T. C., & Wallenstein, M. (2007). Microbial stress-response physiology and its implications for ecosystem function. Ecology (Washington D C), 88, 1386–1394.

    Google Scholar 

  • Schmidt, S. K., Costello, E. K., Nemergut, D. R., Cleveland, C. C., Reed, S. C., Weintraub, M. N., et al. (2007). Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology (Washington D C), 88, 1379–1385.

    CAS  Google Scholar 

  • Sui, F. G., & Li, J. L. (2004). The analysis experiment of soil agricultural chemistry. (pp. 19–20) Laiyang Agricultural University, 2004 (in Chinese).

  • Tariq, S. R., Shah, M. H., Shaheen, N., Jaffar, M., & Khalique, A. (2008). Statistical source identification of metals in groundwater exposed to industrial contamination. Environmental Monitoring and Assessment, 138, 159–165. doi:10.1007/s10661-007-9753-8.

    Article  CAS  Google Scholar 

  • Zahran, H. H. (1997). Diversity, adaptation and activity of the bacterial flora in saline environments. Biology and Fertility of Soils, 25, 211–223. doi:10.1007/s003740050306.

    Article  CAS  Google Scholar 

  • Zhang, Y. L., Dai, J. L., Wang, R. Q., & Zhang, J. (2008). Effects of long-term sewage irrigation on agricultural soil microbial structural and functional characterizations in Shandong, China. European Journal of Soil Biology, 44, 84–91. doi:10.1016/j.ejsobi.2007.10.003.

    Article  CAS  Google Scholar 

  • Zwolinski, M. D. (2007). DNA sequencing: Strategies for soil microbiology. Soil Science Society of America Journal, 71, 592–600. doi:10.2136/sssaj2006.0125.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renqing Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Dai, J., Yu, Y. et al. Efficiencies of different microbial parameters as indicator to assess slight metal pollutions in a farm field near a gold mining area. Environ Monit Assess 161, 495–508 (2010). https://doi.org/10.1007/s10661-009-0763-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0763-6

Keywords

Navigation