Advertisement

Environmental Monitoring and Assessment

, Volume 161, Issue 1–4, pp 495–508 | Cite as

Efficiencies of different microbial parameters as indicator to assess slight metal pollutions in a farm field near a gold mining area

  • Qiang Wang
  • Jiulan Dai
  • Yue Yu
  • Yongli Zhang
  • Tianlin Shen
  • Jiangsheng Liu
  • Renqing Wang
Article

Abstract

In order to monitor changes in the concentrations of metals in the soil, different microbial indices such as BIOLOG®, microbial carbon (Cmic), basal respiration, and culturable microbe’s most probable number were used. We compared these methods and wanted to discover which method was the best at measuring slight changes in the amounts of heavy metals. Factor analyses were applied to the BIOLOG® data and metal concentrations so the combined effects of heavy metals on microbes could be analyzed via statistical data reduction and the distribution patterns of metal concentration could also be revealed. The results showed that the BIOLOG® method could barely detect subtle characteristic changes in the soil samples, while the Cmic method was more sensitive. Furthermore, different heavy metals did not have the same origin/source, and their effects on microbial indices should be analyzed separately. Significant positive correlations between Cmic and metals were observed and suggested the limitation of using traditional microbial parameters as metal pollution indicators. Among all the soil characteristics in our study, pH seemed to be the most active abiotic factor that affected microorganisms.

Keywords

BIOLOG® Environmental monitor Heavy metal Microbial carbon Soil quality Statistical reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. P. E., & Domsch, K. H. (1978). A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology & Biochemistry, 10, 215–221. doi: 10.1016/0038-0717(78)90099-8.CrossRefGoogle Scholar
  2. Brookes, P. C. (1995). The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils, 19, 269–279.CrossRefGoogle Scholar
  3. Broos, K., Macdonald, L. M. J., Warne, M. S., Heemsbergen, D. A., Barnes, M. B., Bell, M. et al. (2007). Limitations of soil microbial biomass carbon as an indicator of soil pollution in the field. Soil Biology & Biochemistry, 39, 2693–2695. doi: 10.1016/j.soilbio.2007.05.014.CrossRefGoogle Scholar
  4. Campbell, C. D., Grayston, S. J., & Hirst, D. J. (1997). Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities. Journal of Microbiological Methods, 30, 33–41. doi: 10.1016/S0167-7012(97)00041-9.CrossRefGoogle Scholar
  5. Chaperon, S., & Sauve, S. (2007). Toxicity interaction of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenase activities in soils. Soil Biology & Biochemistry, 39, 2329–2338. doi: 10.1016/j.soilbio.2007.04.004.CrossRefGoogle Scholar
  6. Demoling, L. A., & Baath, E. (2008). Use of pollution-induced community tolerance of the bacterial community to detect phenol toxicity in soil. Environmental Toxicology and Chemistry, 27, 334–340. doi: 10.1897/07-289R.1.CrossRefGoogle Scholar
  7. Dong, M. (1997). Survey, observation and analysis of terrestrial biocommunities. Beijing: Standard Press of China.Google Scholar
  8. Eleiwa, M. M. E. (2004). Effect of different concentrations of zinc or cadmium on Vigna sinensis plants in presence or absence of arbuscular mycorrhizal fungi and rhizobia. Egyptian Journal of Soil Science, 44, 385–405.Google Scholar
  9. Ellis, R. J., Neish, B., Trett, M. W., Best, J. G., Weightman, A. J., Morgan, P., et al. (2001). Comparison of microbial and meiofaunal community analyses for determining impact of heavy metal contamination. Journal of Microbiological Methods, 45, 171–185. doi: 10.1016/S0167-7012(01)00245-7.CrossRefGoogle Scholar
  10. Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an ecological classification of soil bacteria. Ecology (Washington D C), 88, 1354–1364.Google Scholar
  11. Garland, J. L., & Mills, A. L. (1991). Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology, 57, 2151–2159.Google Scholar
  12. Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology & Biochemistry, 30, 1389–1414. doi: 10.1016/S0038-0717(97)00270-8.CrossRefGoogle Scholar
  13. Hitzl, W., Henrich, M., Kessel, M., & Insam, H. (1997). Application of multivariate analysis of variance and related techniques in soil studies with substrate utilization tests. Journal of Microbiological Methods, 30, 81–89. doi: 10.1016/S0167-7012(97)00047-X.CrossRefGoogle Scholar
  14. Hu, Q., Qi, H. Y., Zeng, J. H., & Zhang, H. X. (2007). Bacterial diversity in soils around a lead and zinc mine. Journal of Environmental Sciences (China), 19, 74–79. doi: 10.1016/S1001-0742(07)60012-6.Google Scholar
  15. Jansen, E., Michels, M., Til, M., & Doelman, P. (1994). Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity-resistance index, an ecologically relevant parameter. Biology and Fertility of Soils, 17, 177–184. doi: 10.1007/BF00336319.CrossRefGoogle Scholar
  16. Konopka, A., Oliver, L., & Turco, R. F. Jr. (1998). The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microbial Ecology, 35, 103–115. doi: 10.1007/s002489900065.CrossRefGoogle Scholar
  17. Lazzaro, A., Widmer, F., Sperisen, C., & Frey, B. (2008). Identification of dominant bacterial phylotypes in a cadmium-treated forest soil. FEMS Microbiology Ecology, 63, 143–155.CrossRefGoogle Scholar
  18. Li, W. H., Zhang, C. B., Gao, G. J., Zan, Q. J., & Yang, Z. Y. (2007). Relationship between Mikania micrantha invasion and soil microbial biomass, respiration and functional diversity. Plant and Soil, 296, 197–207. doi: 10.1007/s11104-007-9310-9.CrossRefGoogle Scholar
  19. Liao, M., Chen, C. L., & Huang, C. Y. (2005). Effect of heavy metals on soil microbial activity and diversity in a reclaimed mining wasteland of red soil area. Journal of Environmental Sciences (China), 17, 832–837. doi: 10.1016/j.ecoenv.2005.12.013.Google Scholar
  20. Liao, M., & Xie, X. M. (2007). Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area. Ecotoxicology and Environmental Safety, 66, 217–223.CrossRefGoogle Scholar
  21. Lu, R. K. (2000). The analysis method of soil agricultural chemistry. (pp. 22–28,106–109) Chinese Society of Soil Science. China Agricultural Science and Technology Publishing Company. (in Chinese).Google Scholar
  22. National Environmental Protection Agency. (1995). National environmental quality standard of soils—China (pp. 2–3).Google Scholar
  23. Niklinska, M., Chodak, M., & Laskowski, R. (2005). Characterization of the forest humus microbial community in a heavy metal polluted area. Soil Biology & Biochemistry, 37, 2185–2194. doi: 10.1016/j.soilbio.2005.03.020.CrossRefGoogle Scholar
  24. Nordgren, A., Kauri, T., Baath, E., & Soderstrom, B. (1986). Soil microbial activity, mycelial lengths and physiological groups of bacteria in a heavy metal polluted area. Environmental Pollution Series A: Ecological and Biological, 41, 89–100.CrossRefGoogle Scholar
  25. Pennanen, T. (2001). Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH—a summary of the use of phospholipid fatty acids, Biolog(R) and 3H-thymidine incorporation methods in field studies. Geoderma, 100, 91–126. doi: 10.1016/S0016-7061(00)00082-3.CrossRefGoogle Scholar
  26. Pennanen, T., Perkiomaki, J., Kiikkila, O., Vanhala, P., Neuvonen, S., & Fritze, H. (1998). Prolonged, simulated acid rain and heavy metal deposition: Separated and combined effects on forest soil microbial community structure. FEMS Microbiology Ecology, 27, 291–300. doi: 10.1111/j.1574-6941.1998.tb00545.x.CrossRefGoogle Scholar
  27. Preston-Mafham, J., Boddy, L., & Randerson, P. F. (2002). Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles—a critique. FEMS Microbiology Ecology, 42, 1–14.Google Scholar
  28. Sandaa, R. A., Torsvik, V., & Enger, O. (2001). Influence of long-term heavy-metal contamination on microbial communities in soil. Soil Biology & Biochemistry, 33, 287–295. doi: 10.1016/S0038-0717(00)00139-5.CrossRefGoogle Scholar
  29. Sandaa, R. A., Torsvik, V., Enger, O., Daae, F. L., Castberg, T., & Hahn, D. (1999). Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiology Ecology, 30, 237–251. doi: 10.1111/j.1574-6941.1999.tb00652.x.CrossRefGoogle Scholar
  30. Sardinha, M., Muller, T., Schmeisky, H., & Joergensen, R. G. (2003). Microbial performance in soils along a salinity gradient under acidic conditions. Applied Soil Ecology, 23, 237–244. doi: 10.1016/S0929-1393(03)00027-1.CrossRefGoogle Scholar
  31. Schimel, J., Balser, T. C., & Wallenstein, M. (2007). Microbial stress-response physiology and its implications for ecosystem function. Ecology (Washington D C), 88, 1386–1394.Google Scholar
  32. Schmidt, S. K., Costello, E. K., Nemergut, D. R., Cleveland, C. C., Reed, S. C., Weintraub, M. N., et al. (2007). Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology (Washington D C), 88, 1379–1385.Google Scholar
  33. Sui, F. G., & Li, J. L. (2004). The analysis experiment of soil agricultural chemistry. (pp. 19–20) Laiyang Agricultural University, 2004 (in Chinese).Google Scholar
  34. Tariq, S. R., Shah, M. H., Shaheen, N., Jaffar, M., & Khalique, A. (2008). Statistical source identification of metals in groundwater exposed to industrial contamination. Environmental Monitoring and Assessment, 138, 159–165. doi: 10.1007/s10661-007-9753-8.CrossRefGoogle Scholar
  35. Zahran, H. H. (1997). Diversity, adaptation and activity of the bacterial flora in saline environments. Biology and Fertility of Soils, 25, 211–223. doi: 10.1007/s003740050306.CrossRefGoogle Scholar
  36. Zhang, Y. L., Dai, J. L., Wang, R. Q., & Zhang, J. (2008). Effects of long-term sewage irrigation on agricultural soil microbial structural and functional characterizations in Shandong, China. European Journal of Soil Biology, 44, 84–91. doi: 10.1016/j.ejsobi.2007.10.003.CrossRefGoogle Scholar
  37. Zwolinski, M. D. (2007). DNA sequencing: Strategies for soil microbiology. Soil Science Society of America Journal, 71, 592–600. doi: 10.2136/sssaj2006.0125.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Qiang Wang
    • 1
  • Jiulan Dai
    • 2
  • Yue Yu
    • 1
  • Yongli Zhang
    • 1
  • Tianlin Shen
    • 1
  • Jiangsheng Liu
    • 2
  • Renqing Wang
    • 1
    • 2
  1. 1.Ecology and Biodiversity Institute, College of Life ScienceShandong UniversityJi’nanChina
  2. 2.Environment Research InstituteShandong UniversityJi’nanChina

Personalised recommendations