Environmental Monitoring and Assessment

, Volume 161, Issue 1–4, pp 439–451 | Cite as

Comparison of a test battery for assessing the toxicity of a bleached-kraft pulp mill effluent before and after secondary treatment implementation

  • R. Rosa
  • M. Moreira-Santos
  • I. Lopes
  • L. Silva
  • J. Rebola
  • E. Mendonça
  • A. Picado
  • R. Ribeiro


Pulp and paper mill effluents may cause harmful effects to the aquatic environment due to the combined influence of physical factors, toxic compounds, and nutrient enrichment. In the present study, the effectiveness of secondary treatment in reducing the toxicity of an elemental chlorine-free bleached-kraft pulp mill effluent was evaluated. To characterize the toxicity of the effluent, before and after the implementation of secondary treatment, a battery of tests with organisms bearing different functions at the ecosystem level was used, namely Vibrio fischeri (5-min luminescence), Pseudokirchneriella subcapitata (72-h growth), Lemna minor (7-day growth), Daphnia magna (21-day reproduction and 24-h postexposure feeding), Chironomus riparius (9-day growth), and Danio rerio (28-day growth). For the effluent sample collected before the implementation of secondary treatment, P. subcapitata was the most sensitive organism followed by V. fischeri and D. magna, and no toxic effects were observed toward the other organisms. For the effluent sample collected after the implementation of secondary treatment, the effluent caused no toxic effects on any of the tested species. The present results demonstrated not only that secondary treatment efficaciously reduced effluent toxicity toward the selected test organisms but also the usefulness of a battery of tests to characterize the toxicity of pulp mill effluents.


Elemental chlorine-free bleaching Standard tests Paper industry Pollution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, M., & Sreekrishnan, T. R. (2001). Aquatic toxicity from pulp and paper mill effluents: A review. Advances in Environmental Research, 5, 175–196. doi: 10.1016/S1093-0191(00)00055-1.CrossRefGoogle Scholar
  2. Amblard, C., Couture, P., & Bourdier, G. (1990). Effects of a pulp and paper mill effluent on the structure and metabolism of periphytic algae in experimental streams. Aquatic Toxicology (Amsterdam, Netherlands), 18, 137–162. doi: 10.1016/0166-445X(90)90023-I.Google Scholar
  3. ASTM (American Society for Testing and Materials) (2002a). Standard guide for conducting acute toxicity tests on test materials with fishes, macroinvertebrates, and amphibians. E 729–96. Annual book of ASTM standards (Vol. 11.05). Philadelphia: ASTM.Google Scholar
  4. ASTM (American Society for Testing and Materials) (2002b). Test method for measuring the toxicity of sediment-associated contaminants with freshwater invertebrates. E 1706–00e2. Annual book of ASTM standards (Vol. 11.05). Philadelphia: ASTM.Google Scholar
  5. Bailey, H. S., & Young, L. (1997). A comparison of the results of freshwater aquatic toxicity testing of pulp and paper mill effluents. Water Science and Technology, 35, 305–313. doi: 10.1016/S0273-1223(96)00945-6.CrossRefGoogle Scholar
  6. Castro, B. B., Guilhermino, L., & Ribeiro, R. (2003). In situ chambers and procedures for assessment of sediment toxicity with Chironomus riparius. Environmental Pollution, 125, 325–335. doi: 10.1016/S0269-7491(03)00120-9.CrossRefGoogle Scholar
  7. de Haas, E. M., Reuvers, B., Moermond, C. T. A., Koelmans, A. A., & Kraak, M. H. S. (2002). Responses of benthic invertebrates to combined toxicant and food input in floodplain lake sediments. Environmental Toxicology and Chemistry, 21, 2165–2171. doi: 10.1897/1551-5028(2002)021<2165:ROBITC>2.0.CO;2.CrossRefGoogle Scholar
  8. Dubé, M. G., & Culp, J. M. (1996). Growth responses of periphyton and chironomids exposed to biologically treated bleached-kraft pulp mill effluent. Environmental Toxicology and Chemistry, 15, 2019–2027. doi: 10.1897/1551-5028(1996)015<2019:GROPAC>2.3.CO;2.CrossRefGoogle Scholar
  9. Environment Canada (2003). National assessment of pulp and paper environmental effects monitoring data: A report synopsis. National water research institute scientific assessment report series no. 2. Burlington: NWRI.Google Scholar
  10. EC (European Commission) (1991). Integrated pollution prevention and control (IPPC): Reference document on best available techniques in the pulp and paper industry, Chap. 6. Seville: EC.Google Scholar
  11. EEC (European Economic Community) (1989). Algal growth inhibition test. EEC directive 79/831/EEC, annex V, Part C: Methods for the determination of ecotoxicity. Brussels: EEC, p. 1989.Google Scholar
  12. Ferreira, R. C. F., Graça, M. A. S., Craveiro, S., Santos, L. M. A., & Culp, J. M. (2002). Integrated environmental assessment of BKME discharged into a Mediterranean river. Water Quality Research Journal of Canada, 37, 181–193.Google Scholar
  13. Groenendijk, D., Postma, J. F., Kraak, M. H. S., & Admiraal, W. (1998). Seasonal dynamics and larval drift of Chironomus riparius (Diptera) in a metal contaminated lowland river. Aquatic Ecology, 32, 341–351. doi: 10.1023/A:1009951709797.CrossRefGoogle Scholar
  14. Hall, T. J., Haley, R. K., & LaFleur, L. (1991). Effects of biologically treated bleached kraft mill effluent on cold water stream productivity in experimental stream channels. Environmental Toxicology and Chemistry, 10, 1051–1060. doi: 10.1897/1552-8618(1991)10[1051:EOBTBK]2.0.CO;2.CrossRefGoogle Scholar
  15. Hewitt, L. M., Parrott, J. L., & McMaster, M. E. (2006). A decade of research on the environmental impacts of pulp and paper effluents in Canada: Sources and characteristics of bioactive substances. Journal of Toxicology and Environmental Health, 9, 341–356. doi: 10.1080/15287390500195976.CrossRefGoogle Scholar
  16. ISO (International Standardization Organization) (2005). Water quality – Determination of toxic effect of water constituents and waste water to duckweed (Lemna minor) – Duckweed growth inhibition test. ISO international standard ISO/DIS 20079. Geneva: ISO.Google Scholar
  17. Kovacs, T. G., Tana, J., Lehtinen, K. -J., & Sangfårs, O. (1994). A comparison of the environmental quality of elemental chlorine-free (ECF) and totally chlorine-free (TCF) hardwood bleach plant effluents. Miscellaneous Report 298. Point-Claire: Pulp and Paper Research Institute of Canada.Google Scholar
  18. Kovacs, T. G., Martel, P. H., Gibbons, J. S., O’Connor, B. I., & Voss, R. H. (2002). Tracking the benefits of mill environmental investments aimed at protecting aquatic organisms. Tappi Journal, 1, 9–15.Google Scholar
  19. Kovacs, T., Hewitt, M., Dubé, M., MacLatchy, D., Parrott, J., McMaster, M., et al. (2006). Towards the elimination of the changes in reproductive indicators of fish associated with exposure to pulp and paper mill effluents. In Sixth International conference on the fate and effects of pulp and paper mill effluents, 9–12 April 2006. Vitória, Brazil: Associação Brasileira Técnica de Celulose e Papel.Google Scholar
  20. Kovacs, T., Hewitt, M., MacLatchy, D., Martel, P., McMaster, M., Parrott, J., et al. (2007). Cycle 4 national investigation of cause project final project. Burlington: Environment Canada.Google Scholar
  21. Kostamo, A., Holmbom, B., & Kukkonen, J. (2004). Fate of wood extractives in wastewaters treatment plants at kraft pulp mills and mechanical mills. Water Research, 38, 972–982. doi: 10.1016/j.watres.2003.10.051.CrossRefGoogle Scholar
  22. Lacorte, S., Latorre, A., Barceló, D., Rigol, A., Malmqvist, A., & Welander, T. (2003). Organic compounds in paper-mill process waters and effluents. Trends in Analytical Chemistry, 22, 725–737. doi: 10.1016/S0165-9936(03)01009-4.CrossRefGoogle Scholar
  23. Landner, L., Grahn, O., Hardig, J., Lehtinen, K. J., Monfelt, C., & Tana, J. (1994). A field-study of environmental impacts at a bleached kraft pulp-mill site on the Baltic Sea coast. Ecotoxicology and Environmental Safety, 27, 128–157. doi: 10.1006/eesa.1994.1012.CrossRefGoogle Scholar
  24. Latorre, A., Rigol, A., Lacorte, S., & Barceló, D. (2005). Organic compounds in paper mill wastewaters. The handbook of environmental chemistry (Vol. 5, pp. 25–51). Berlin: Springer.Google Scholar
  25. Latorre, A., Malmqvist, A., Lacorte, S., Welander, T., & Barceló, D. (2007). Evaluation of the treatment efficiencies of paper mill whitewaters in terms of organic composition and toxicity. Environmental Pollution, 147, 648–655. doi: 10.1016/j.envpol.2006.09.015.CrossRefGoogle Scholar
  26. Lowell, R. B., Culp, J. M., & Wrona, F. J. (1995). Stimulation of increased short-term growth and development of mayflies by pulp mill effluent. Environmental Toxicology and Chemistry, 14, 1529–1541. doi: 10.1897/1552-8618(1995)14[1529:SOISGA]2.0.CO;2.CrossRefGoogle Scholar
  27. McLeay, D. (1987). Aquatic toxicity of pulp and paper mill effluent: A review. Environmental protection series report 4/PF/1. Ottawa: Environment Canada.Google Scholar
  28. McMaster, M. E., Parrott, J. L., & Hewitt, L. M. (2003). A decade of research on the environmental effects of pulp and paper mill in Canada (1992–2002). National water research institute scientific assessment report series no.4. Burlington: NWRI.Google Scholar
  29. McWilliam, R. A., & Baird, D. J. (2002). Postexposure feeding depression: A new toxicity endpoint for use in laboratory studies with Daphnia magna. Environmental Toxicology and Chemistry, 21, 1198–1205. doi: 10.1897/1551-5028(2002)021<1198:PFDANT>2.0.CO;2.CrossRefGoogle Scholar
  30. Mohan, B. S., & Hosetti, B. B. (1999). Review—Aquatic plants for toxicity assessment. Environmental Research, 81, 259–274. doi: 10.1006/enrs.1999.3960.CrossRefGoogle Scholar
  31. Munkittrick, K. R., Van der Kraak, G. J., McMaster, M. E., & Portt, C. B. (1992). Response of hepatic MFO activity and plasma sex steroids to secondary treatment of bleached kraft pulp mill effluent and mill shutdown. Environmental Toxicology and Chemistry, 11, 1427–1439. doi: 10.1897/1552-8618(1992)11[1427:ROHMAA]2.0.CO;2.CrossRefGoogle Scholar
  32. Oanh, N. T. K., & Bengtsson, B. E. (1995). Toxicity to Microtox, micro-algae and duckweed of effluents from the Bai Bang paper company (BAPACO), a Vietnamese bleached kraft pulp and paper mill. Environmental Pollution, 9, 391–399. doi: 10.1016/0269-7491(95)00008-F.CrossRefGoogle Scholar
  33. OECD (Organization for Economic Cooperation and Development) (1984). Algal growth inhibition test. OECD guidelines for testing of chemicals (Vol. 201). Paris: OECD.Google Scholar
  34. OECD (Organization for Economic Cooperation and Development) (1998a). Daphnia magna reproduction test. OECD Guidelines for Testing of Chemicals (Vol. 211). Paris: OECDGoogle Scholar
  35. (Organization for Economic Cooperation and Development) (1998b). Report of the OECD workshop on statistical analysis of aquatic toxicity data. OECD series on testing and assessment (Vol. 10). Paris: OECD.Google Scholar
  36. OECD (Organization for Economic Cooperation and Development) (2000). Fish, juvenile growth test. OECD guidelines for testing of chemicals (Vol. 215). Paris: OECD.Google Scholar
  37. OECD (Organization for Economic Cooperation and Development) (2004). Sediment-water chironomid test using spiked water. OECD guidelines for testing of chemicals (Vol. 218). Paris: OECD.Google Scholar
  38. O’Connor, B., Kovacs, T., & Voss, R. (2003). The influence of pulp and paper mill effluent biosolids on Ceriodaphnia reproduction. In T. Stuthridge, M. R. Van den Heuvel, N. A. Marvin, A. H. Slade, & J. Gifford (Eds.), Proceedings of the third international conference on environmental fate and effects of pulp and paper mill effluents (pp. 280–289). Rotorua: PAPRO.Google Scholar
  39. Parrott, J. L., McMaster, M. E., & Hewitt, L. M. (2006). A decade of research on the environmental impacts of pulp and paper mill effluents in Canada: Development and application of fish bioassays. Journal of Toxicology and Environmental Health, 9, 297–317. doi: 10.1080/15287390500195752.CrossRefGoogle Scholar
  40. Pokhrel, D., & Viraraghavan, T. (2004). Treatment of pulp and paper mill wastewater—a review. The Science of the Total Environment, 333, 37–58. doi: 10.1016/j.scitotenv.2004.05.017.CrossRefGoogle Scholar
  41. Robinson, R. D., Carey, J. H., Solomon, K. R., Smith, I. R., Servos, M. R., & Munkittrick, K. R. (1994). Survey of receiving-water environmental impacts associated with discharges from pulp mills.1. Mill characteristics, receiving-water chemical profiles and lab toxicity tests. Environmental Toxicology and Chemistry, 13, 1075–1088. doi: 10.1897/1552-8618(1994)13[1075:SOREIA]2.0.CO;2.CrossRefGoogle Scholar
  42. Smolders, R., Bervoets, L., De Boeck, G., & Blust, R. (2002). Integrated condition indices as a measure of whole effluent toxicity in zebrafish (Danio rerio). Environmental Toxicology and Chemistry, 21, 87–93. doi: 10.1897/1551-5028(2002)021<0087:ICIAAM>2.0.CO;2.CrossRefGoogle Scholar
  43. Sobral, O., Ribeiro, R., Gonçalves, F., & Soares, A. M. V. M. (1998). Ecotoxicity of pulp mill effluents from different prebleaching processes. Bulletin of Environmental Contamination and Toxicology, 61, 738–745. doi: 10.1007/s001289900823.CrossRefGoogle Scholar
  44. Soimasuo, R., Aaltonen, T., Nikinmaa, M., Pellinen, J., Ristola, T., & Oikari, A. (1995). Physiological toxicity of low-chlorine bleached pulp and paper mill effluent on white fish (Coregonus lavaretus L.s.l.): A laboratory exposure simulating lake pollution. Ecotoxicology and Environmental Safety, 31, 228–237. doi: 10.1006/eesa.1995.1068.CrossRefGoogle Scholar
  45. Sponza, D. T. (2003). Application of toxicity tests into discharges of the pulp-paper industry in Turkey. Ecotoxicology and Environmental Safety, 54, 74–86. doi: 10.1016/S0147-6513(02)00024-6.CrossRefGoogle Scholar
  46. Stein, J. R. (1973). Handbook of phycological methods, culture methods, and growth measurements. London: Cambridge University Press.Google Scholar
  47. Tarkpea, M., Eklund, B., Linde, M., & Bengtsson, B.-E. (1999). Toxicity of conventional, elemental chlorine-free, and totally chlorine-free kraft-pulp bleaching effluents assessed by short-term lethal and sublethal bioassays. Environmental Toxicology and Chemistry, 18, 2487–2496. doi: 10.1897/1551-5028(1999)018<2487:TOCECF>2.3.CO;2.CrossRefGoogle Scholar
  48. van Wijk, D. J., & Hutchinson, T. H. (1995). The ecotoxicity of chlorate to aquatic organisms: A critical review. Ecotoxicology and Environmental Safety, 32, 244–253. doi: 10.1006/eesa.1995.1110.CrossRefGoogle Scholar
  49. Yen, N. T., Oanh, N. T. K., Reutergardh, L. B., Wise, D. L., & Lan, N. T. T. (1996). An integrated waste survey and environmental effects of COGIDO, a bleached pulp and paper mill in Vietnam, on the receiving waterbody. Resources, Conservation and Recycling, 18, 161–163. doi: 10.1016/S0921-3449(96)01177-9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • R. Rosa
    • 1
  • M. Moreira-Santos
    • 1
  • I. Lopes
    • 2
  • L. Silva
    • 3
  • J. Rebola
    • 4
  • E. Mendonça
    • 3
  • A. Picado
    • 3
  • R. Ribeiro
    • 1
  1. 1.IMAR-Instituto do Mar, Department of ZoologyUniversity of CoimbraCoimbraPortugal
  2. 2.CESAM (Centro de Estudos do Ambiente e do Mar) & Departamento de BiologiaUniversidade de AveiroAveiroPortugal
  3. 3.Instituto Nacional de Engenharia, Tecnologia e InovaçãoLisboaPortugal
  4. 4.Celulose Beira Industrial (CELBI)Figueira da FozPortugal

Personalised recommendations