Skip to main content

Advertisement

Log in

Effects of crude oil residuals on soil chemical properties in oil sites, Momoge Wetland, China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Crude oil exploration and production has been the largest anthropogenic factor contributing to the degradation of Momoge Wetland, China. To study the effects of crude oil on wetland soils, we examined the total petroleum hydrocarbon (TPH), total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP), as well as pH and electricity conductivity (EC) from oil sites and uncontaminated areas in the Momoge Wetland. All contaminated areas had significantly higher (p < 0.05) contents of TPH and TOC, but significantly lower (p < 0.05) TN contents than those of the uncontaminated areas. Contaminated sites also exhibited significantly higher (p < 0.05) pH values, C/N and C/P ratios. For TP contents and EC, no significant changes were detected. The level of soil contamination and impact of oil residuals on soil quality greatly depended on the length of time the oil well was in production. Oil residuals had caused some major changes in the soils’ chemical properties in the Momoge Wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Darwish, H. A., Abd El-Gawad, E. A., Mohammed, F. H., & Lotfy, M. M. (2005). Assessment of contaminants in Dubai coastal region, United Arab Emirates. Environmental Geology, 49, 240–250. doi:10.1007/s00254-005-0078-z.

    Article  CAS  Google Scholar 

  • Andrade, M. L., Covelo, E. F., Vega, F. A., & Marcet, P. (2004). Effect of the Prestige oil spill on salt marsh soils on the coast of Galicia (northwestern Spain). Journal of Environmental Quality, 33, 2103–2110.

    Article  CAS  Google Scholar 

  • APHA (1992). Standard methods for the examination of water and wastewater (18th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Atlas, R. M., & Bartha, R. (1973). Stimulated biodegradation of oil slicks using oleophilic fertilizers. Environmental Science & Technology, 7, 538–541. doi:10.1021/es60078a005.

    Article  CAS  Google Scholar 

  • Barakat, A. O., Qian, Y., Kim, M., & Kennicutt, M. C. (2001). Chemical characterization of naturally weathered oil residues in arid terrestrial environment in Al-Alamein, Egypt. Environment International, 27, 291–310. doi:10.1016/S0160-4120(01)00060-5.

    Article  CAS  Google Scholar 

  • Bollag, J. M. (1992). Decontaminating soil with enzymes. Environmental Science & Technology, 26, 1876–1881. doi:10.1021/es00034a002.

    Article  CAS  Google Scholar 

  • Braddock, J. F., Ruth, M. L., Catterall, P. H., Walworth, J. L., & McCarthy, K. A. (1997). Enhancement and inhibition of microbial activity in hydrocarbon-contaminated arctic soils: Implications for nutrient-amended bioremediation. Environmental Science & Technology, 31, 2078–2084. doi:10.1021/es960904d.

    Article  CAS  Google Scholar 

  • Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen—total. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis. Part 2 (2nd ed.). Agron. Monogr. (Vol. 9, pp. 595–624). Madison, WI: ASA and SSSA.

    Google Scholar 

  • Burns, K. A., Garrity, S. D., & Levings, S. C. (1993). Review: How many years until mangrove ecosystems recover from catastrophic oil spills? Marine Pollution Bulletin, 26, 239–248. doi:10.1016/0025-326X(93)90062-O.

    Article  CAS  Google Scholar 

  • Carls, E. G., Fenn, D. B., & Chaffey, S. A. (1995). Soil contamination by oil and gas drilling and production operations in Padre Island National Seashore, Texas, USA. Journal of Environmental Management, 45, 273–286. doi:10.1006/jema.1995.0075.

    Article  Google Scholar 

  • Consulting, A. L. L. (2003). Handbook on coal bed methane produced water: Management and beneficial use alternatives. Prepared for: Groundwater Protection Research Foundation, US Department of Energy, National Petroleum Technology Office, Bureau of Land Management, July.

  • Corredor, J. E., Morrell, J. M., & Del Castillo, C. E. (1990). Persistence of spilled oil in a tropical intertidal environment. Marine Pollution Bulletin, 21, 385–388. doi:10.1016/0025-326X(90)90647-Q.

    Article  CAS  Google Scholar 

  • Cunningham, S. D., Anderson, T. A., Schwab, A. P., & Hsu, F. C. (1996). Phytoremediation of soils contaminated with organic pollutants. Advances in Agronomy, 56, 55–114. doi:10.1016/S0065-2113(08)60179-0.

    Article  CAS  Google Scholar 

  • DeLaune, R. D., Patrick, W. H. J., & Buresh, R. J. (1979). Effect of crude oil on a Louisiana Spartina Alterniflora Salt Marsh. Environmental Pollution, 20, 21–31. doi:10.1016/0013-9327(79)90050-8.

    Article  CAS  Google Scholar 

  • Ferrell, R. E., Seneca, E. D., & Linthurst, R. A. (1984). The effects of crude oil on the growth of Spartina alterniflora Loisel. and Spartina cynosuroides (L.) Roth. Journal of Experimental Marine Biology and Ecology, 83, 27–39. doi:10.1016/0022-0981(84)90115-1.

    Article  Google Scholar 

  • Hambrick, G. A., DeLaune, R. D., & Patrick, W. H. (1980). Effect of estuarine sediment pH and oxidation–reduction potential on microbial hydrocarbon degradation. Applied and Environmental Microbiology, 40, 365–369.

    CAS  Google Scholar 

  • Jobson, A., McLaughlin, M., Cook, F. D., & Westlake, D. W. S. (1974). Effect of amendments on the microbial utilization of oil applied to soil. Applied Microbiology, 27, 166–171.

    CAS  Google Scholar 

  • Karvelas, M., Katsoyiannis, A., & Samara, C. (2003). Occurrence and fate of heavy metals in the wastewater treatment process. Chemosphere, 53, 1201–1210. doi:10.1016/S0045-6535(03)00591-5.

    Article  CAS  Google Scholar 

  • Ko, J. Y., & Day, J. W. (2004). A review of ecologyical impacts of oil and gas development on coastal ecosystems in the Mississippi Delt. Ocean and Coastal Management, 47, 597–623. doi:10.1016/j.ocecoaman.2004.12.004.

    Article  Google Scholar 

  • Lin, Q., & Mendelssohn, I. A. (1996). A comparative investigation of the effects of south Louisiana crude oil on the vegetation of fresh, brackish and salt marshes. Marine Pollution Bulletin, 32, 202–209. doi:10.1016/0025-326X(95)00118-7.

    Article  CAS  Google Scholar 

  • Lin, Q., & Mendelssohn, I. A. (1998). The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands. Ecological Engineering, 10, 263–274. doi:10.1016/S0925-8574(98)00015-9.

    Article  Google Scholar 

  • Mitsch, W. J., & Gosselink, J. G. (1993). Wetlands. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Nyman, J. A. (1999). Effect of crude oil and chemical additives on metabolic activity of mixed microbial populations in fresh marsh soils. Microbial Ecology, 37, 152–162. doi:10.1007/s002489900139.

    Article  CAS  Google Scholar 

  • Nyman, J. A., Klerks, P. L., & Bhattacharyya, S. (2007). Effects of chemical additives on hydrocarbon disappearance and biodegradation in freshwater marsh microcosms. Environmental Pollution, 149, 227–238. doi:10.1016/j.envpol.2006.12.028.

    Article  CAS  Google Scholar 

  • Oudet, J. (1989). Hydrocarbon weathering and biodegradation in a tropical estuarine ecosystem. Marine Environmental Research, 27, 195–213. doi:10.1016/0141-1136(89)90024-X.

    Article  Google Scholar 

  • Pan, X., Zhang, D., & Quan, L. (2006). Interactive factors leading to dying-off Carex tato in Momoge wetland polluted by crude oil, Western Jilin, China. Chemosphere, 65, 1772–1777. doi:10.1016/j.chemosphere.2006.04.063.

    Article  CAS  Google Scholar 

  • Pezeshki, S. R., Hester, M. W., Lin, Q., & Nyman, J. A. (2000). The effects of oil spill and clean-up on dominant US Gulf coast marsh macrophytes: A review. Environmental Pollution, 108, 129–139. doi:10.1016/S0269-7491(99)00244-4.

    Article  CAS  Google Scholar 

  • Samanta, S. K., Singh, O. V., & Jain, R. K. (2002). Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends in Biotechnology, 20, 243–248. doi:10.1016/S0167-7799(02)01943-1.

    Article  CAS  Google Scholar 

  • Sandvik, S., Lode, A., & Pederson, T. A. (1986). Biodegradation of oily sludge in Norwegian soils. Applied Microbiology and Biotechnology, 23, 297–301. doi:10.1007/BF00261932.

    Article  CAS  Google Scholar 

  • Schreier, C. G., Walker, W. J., Burns, J., & Wilkenfeld, R. (1999). Total organic carbon as a screening method for petroleum hydrocarbons. Chemosphere, 39, 503–510. doi:10.1016/S0045-6535(98)00598-0.

    Article  CAS  Google Scholar 

  • SPSS (2005). SPSS 14.0 for Windows. Chicago, IL: SPSS Inc.

    Google Scholar 

  • Teal, J. M., Farrington, J. W., Burns, K. A., Stegeman, J. J., Tripp, B. W., Woodin, B., et al. (1992). The West Falmouth oil spill after 20 years: Fate of fuel oil compounds and effects on animals. Marine Pollution Bulletin, 24, 607–614. doi:10.1016/0025-326X(92)90281-A.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Feng, J. & Zhao, J. Effects of crude oil residuals on soil chemical properties in oil sites, Momoge Wetland, China. Environ Monit Assess 161, 271–280 (2010). https://doi.org/10.1007/s10661-008-0744-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0744-1

Keywords

Navigation