Environmental Monitoring and Assessment

, Volume 161, Issue 1–4, pp 271–280 | Cite as

Effects of crude oil residuals on soil chemical properties in oil sites, Momoge Wetland, China

  • Xiaoyu Wang
  • Jiang Feng
  • Jimin Zhao


Crude oil exploration and production has been the largest anthropogenic factor contributing to the degradation of Momoge Wetland, China. To study the effects of crude oil on wetland soils, we examined the total petroleum hydrocarbon (TPH), total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP), as well as pH and electricity conductivity (EC) from oil sites and uncontaminated areas in the Momoge Wetland. All contaminated areas had significantly higher (p < 0.05) contents of TPH and TOC, but significantly lower (p < 0.05) TN contents than those of the uncontaminated areas. Contaminated sites also exhibited significantly higher (p < 0.05) pH values, C/N and C/P ratios. For TP contents and EC, no significant changes were detected. The level of soil contamination and impact of oil residuals on soil quality greatly depended on the length of time the oil well was in production. Oil residuals had caused some major changes in the soils’ chemical properties in the Momoge Wetland.


Hydrocarbon Momoge Wetland Petroleum exploration and production Soil contamination Wetland degradation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Darwish, H. A., Abd El-Gawad, E. A., Mohammed, F. H., & Lotfy, M. M. (2005). Assessment of contaminants in Dubai coastal region, United Arab Emirates. Environmental Geology, 49, 240–250. doi: 10.1007/s00254-005-0078-z.CrossRefGoogle Scholar
  2. Andrade, M. L., Covelo, E. F., Vega, F. A., & Marcet, P. (2004). Effect of the Prestige oil spill on salt marsh soils on the coast of Galicia (northwestern Spain). Journal of Environmental Quality, 33, 2103–2110.CrossRefGoogle Scholar
  3. APHA (1992). Standard methods for the examination of water and wastewater (18th ed.). Washington, DC: American Public Health Association.Google Scholar
  4. Atlas, R. M., & Bartha, R. (1973). Stimulated biodegradation of oil slicks using oleophilic fertilizers. Environmental Science & Technology, 7, 538–541. doi: 10.1021/es60078a005.CrossRefGoogle Scholar
  5. Barakat, A. O., Qian, Y., Kim, M., & Kennicutt, M. C. (2001). Chemical characterization of naturally weathered oil residues in arid terrestrial environment in Al-Alamein, Egypt. Environment International, 27, 291–310. doi: 10.1016/S0160-4120(01)00060-5.CrossRefGoogle Scholar
  6. Bollag, J. M. (1992). Decontaminating soil with enzymes. Environmental Science & Technology, 26, 1876–1881. doi: 10.1021/es00034a002.CrossRefGoogle Scholar
  7. Braddock, J. F., Ruth, M. L., Catterall, P. H., Walworth, J. L., & McCarthy, K. A. (1997). Enhancement and inhibition of microbial activity in hydrocarbon-contaminated arctic soils: Implications for nutrient-amended bioremediation. Environmental Science & Technology, 31, 2078–2084. doi: 10.1021/es960904d.CrossRefGoogle Scholar
  8. Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen—total. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis. Part 2 (2nd ed.). Agron. Monogr. (Vol. 9, pp. 595–624). Madison, WI: ASA and SSSA.Google Scholar
  9. Burns, K. A., Garrity, S. D., & Levings, S. C. (1993). Review: How many years until mangrove ecosystems recover from catastrophic oil spills? Marine Pollution Bulletin, 26, 239–248. doi: 10.1016/0025-326X(93)90062-O.CrossRefGoogle Scholar
  10. Carls, E. G., Fenn, D. B., & Chaffey, S. A. (1995). Soil contamination by oil and gas drilling and production operations in Padre Island National Seashore, Texas, USA. Journal of Environmental Management, 45, 273–286. doi: 10.1006/jema.1995.0075.CrossRefGoogle Scholar
  11. Consulting, A. L. L. (2003). Handbook on coal bed methane produced water: Management and beneficial use alternatives. Prepared for: Groundwater Protection Research Foundation, US Department of Energy, National Petroleum Technology Office, Bureau of Land Management, July.Google Scholar
  12. Corredor, J. E., Morrell, J. M., & Del Castillo, C. E. (1990). Persistence of spilled oil in a tropical intertidal environment. Marine Pollution Bulletin, 21, 385–388. doi: 10.1016/0025-326X(90)90647-Q.CrossRefGoogle Scholar
  13. Cunningham, S. D., Anderson, T. A., Schwab, A. P., & Hsu, F. C. (1996). Phytoremediation of soils contaminated with organic pollutants. Advances in Agronomy, 56, 55–114. doi: 10.1016/S0065-2113(08)60179-0.CrossRefGoogle Scholar
  14. DeLaune, R. D., Patrick, W. H. J., & Buresh, R. J. (1979). Effect of crude oil on a Louisiana Spartina Alterniflora Salt Marsh. Environmental Pollution, 20, 21–31. doi: 10.1016/0013-9327(79)90050-8.CrossRefGoogle Scholar
  15. Ferrell, R. E., Seneca, E. D., & Linthurst, R. A. (1984). The effects of crude oil on the growth of Spartina alterniflora Loisel. and Spartina cynosuroides (L.) Roth. Journal of Experimental Marine Biology and Ecology, 83, 27–39. doi: 10.1016/0022-0981(84)90115-1.CrossRefGoogle Scholar
  16. Hambrick, G. A., DeLaune, R. D., & Patrick, W. H. (1980). Effect of estuarine sediment pH and oxidation–reduction potential on microbial hydrocarbon degradation. Applied and Environmental Microbiology, 40, 365–369.Google Scholar
  17. Jobson, A., McLaughlin, M., Cook, F. D., & Westlake, D. W. S. (1974). Effect of amendments on the microbial utilization of oil applied to soil. Applied Microbiology, 27, 166–171.Google Scholar
  18. Karvelas, M., Katsoyiannis, A., & Samara, C. (2003). Occurrence and fate of heavy metals in the wastewater treatment process. Chemosphere, 53, 1201–1210. doi: 10.1016/S0045-6535(03)00591-5.CrossRefGoogle Scholar
  19. Ko, J. Y., & Day, J. W. (2004). A review of ecologyical impacts of oil and gas development on coastal ecosystems in the Mississippi Delt. Ocean and Coastal Management, 47, 597–623. doi: 10.1016/j.ocecoaman.2004.12.004.CrossRefGoogle Scholar
  20. Lin, Q., & Mendelssohn, I. A. (1996). A comparative investigation of the effects of south Louisiana crude oil on the vegetation of fresh, brackish and salt marshes. Marine Pollution Bulletin, 32, 202–209. doi: 10.1016/0025-326X(95)00118-7.CrossRefGoogle Scholar
  21. Lin, Q., & Mendelssohn, I. A. (1998). The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands. Ecological Engineering, 10, 263–274. doi: 10.1016/S0925-8574(98)00015-9.CrossRefGoogle Scholar
  22. Mitsch, W. J., & Gosselink, J. G. (1993). Wetlands. New York: Van Nostrand Reinhold.Google Scholar
  23. Nyman, J. A. (1999). Effect of crude oil and chemical additives on metabolic activity of mixed microbial populations in fresh marsh soils. Microbial Ecology, 37, 152–162. doi: 10.1007/s002489900139.CrossRefGoogle Scholar
  24. Nyman, J. A., Klerks, P. L., & Bhattacharyya, S. (2007). Effects of chemical additives on hydrocarbon disappearance and biodegradation in freshwater marsh microcosms. Environmental Pollution, 149, 227–238. doi: 10.1016/j.envpol.2006.12.028.CrossRefGoogle Scholar
  25. Oudet, J. (1989). Hydrocarbon weathering and biodegradation in a tropical estuarine ecosystem. Marine Environmental Research, 27, 195–213. doi: 10.1016/0141-1136(89)90024-X.CrossRefGoogle Scholar
  26. Pan, X., Zhang, D., & Quan, L. (2006). Interactive factors leading to dying-off Carex tato in Momoge wetland polluted by crude oil, Western Jilin, China. Chemosphere, 65, 1772–1777. doi: 10.1016/j.chemosphere.2006.04.063.CrossRefGoogle Scholar
  27. Pezeshki, S. R., Hester, M. W., Lin, Q., & Nyman, J. A. (2000). The effects of oil spill and clean-up on dominant US Gulf coast marsh macrophytes: A review. Environmental Pollution, 108, 129–139. doi: 10.1016/S0269-7491(99)00244-4.CrossRefGoogle Scholar
  28. Samanta, S. K., Singh, O. V., & Jain, R. K. (2002). Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends in Biotechnology, 20, 243–248. doi: 10.1016/S0167-7799(02)01943-1.CrossRefGoogle Scholar
  29. Sandvik, S., Lode, A., & Pederson, T. A. (1986). Biodegradation of oily sludge in Norwegian soils. Applied Microbiology and Biotechnology, 23, 297–301. doi: 10.1007/BF00261932.CrossRefGoogle Scholar
  30. Schreier, C. G., Walker, W. J., Burns, J., & Wilkenfeld, R. (1999). Total organic carbon as a screening method for petroleum hydrocarbons. Chemosphere, 39, 503–510. doi: 10.1016/S0045-6535(98)00598-0.CrossRefGoogle Scholar
  31. SPSS (2005). SPSS 14.0 for Windows. Chicago, IL: SPSS Inc.Google Scholar
  32. Teal, J. M., Farrington, J. W., Burns, K. A., Stegeman, J. J., Tripp, B. W., Woodin, B., et al. (1992). The West Falmouth oil spill after 20 years: Fate of fuel oil compounds and effects on animals. Marine Pollution Bulletin, 24, 607–614. doi: 10.1016/0025-326X(92)90281-A.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental ProtectionNortheast Normal UniversityChangchunChina
  2. 2.College of Urban and Environmental ScienceNortheast Normal UniversityChangchunChina
  3. 3.Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland ScienceNortheast Normal UniversityChangchunChina
  4. 4.School of Life ScienceChangchun Normal UniversityChangchunChina

Personalised recommendations