Advertisement

Environmental Monitoring and Assessment

, Volume 161, Issue 1–4, pp 177–189 | Cite as

Water quality assessment near an industrial site of Damodar River, India

  • Soroj Kumar Chatterjee
  • Indranil Bhattacharjee
  • Goutam Chandra
Article

Abstract

An assessment on the water quality parameters coliform including the bacterial abundance from a point source of river Damodar (24°26 N and 86°53 E), West Bengal, India was carried out during the period of 2004–2007. The site received mining and industrial effluents from the collieries and industries. The water samples collected on a monthly basis revealed the presence of the coliform bacteria Escherichia coli and Streptococcus sp., between 2,600 and 20,000 colony-forming unit/100 ml throughout the study period with peak abundance during the months of September to December, the post-monsoon period. The relative abundance of the two bacterial species was found to be y(E. coli) = 1.41x (Streptococcus) − 8.07 and were positively correlated (r = + 0.868, df = 34). Principal component analysis revealed three factors to clarify for the observed variance of the environmental variables. The mean values of the physicochemical parameters of the river water at the sampling sites were consistently higher than the levels specified by WHO and other regulatory bodies and qualify as polluted water. The presence of the coliform bacteria in these water samples warrants for proper measure to reduce the pollution at the point source and proper remediation strategies to combat contamination in the domestic water usage from river Damodar from this site and downstream.

Keywords

Damodar river Industrial effluents Kalajharia Microbiological parameters Physicochemical parameters Principal component analysis (PCA) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharya, S. K., & Shah, B. A. (2007). Arsenic contaminated groundwater from parts of Damodar fan delta and West of Bhagirathi River, West Bengal, India: Influence of fluvil geomorphology and quarternary morphostratigraphy. Environmental Geology, 52(3), 489–501. doi: 10.1007/s00254-006-0482-z.CrossRefGoogle Scholar
  2. Adamiec, E., & Helios-Rybicka, E. (2002). Distribution of pollutants in the Odra River system part IV. Heavy metal distribution in water of the upper and middle Odra River, 1998–2000. Polish Journal of Environmental Studies, 11(6), 669–673.Google Scholar
  3. Ajibade, L. T. (2004). Assessment of water quality along River Asa, Ilorin, Nigeria. The Environmentalist, 24, 11–18. doi: 10.1007/s10661-005-9172-7c.CrossRefGoogle Scholar
  4. American Public Health Association (APHA) (1998). Standard methods for the examination of water and wastewater (20th ed.) Washington, DC: American Public Health Association.Google Scholar
  5. Aruga, R., Negro, G., & Ostacoli, G. (1993). Multivariate data analysis applied to the investigation of river pollution. Fresenius’ Journal of Analytical Chemistry, 346, 968–975. doi: 10.1007/BF00322761.CrossRefGoogle Scholar
  6. Ayotamuno, M. J. (1994). Studies of pollution by industrial effluents in the rivers state, Nigeria. The International Journal of Environmental Studies, 45(3), 211–216. doi: 10.1080/00207239408710895.CrossRefGoogle Scholar
  7. Basu, M., & Mitra, A. K. (2002). Studies on the pollution of river Damodar at Burdwan with special reference to metals, COD and pH. Nature Environment and Pollution Technology, 1(4), 397–400.Google Scholar
  8. Bhattacharya, G., Sadhu, A. K., Mazumdar, A., & Chaudhuri, P. K. (2005). Antennal deformities of chironomid larvae and their use in biomonitoring of heavy metal pollutants in the river Damodar of West Bengal, India. Environmental Assessment and Monitoring, 108(1–3), 67–84. doi: 10.1007/s10661-005-3963-8.CrossRefGoogle Scholar
  9. Bhattacharya, G., Sadhu, A. K., Mazumdar, A., Majumdar, U., & Chaudhuri, P. K. (2006). Assessment of impact of heavy metals on the communities and morphological deformities of chironomidae larvae in the river Damodar (India, West Bengal). Acta Hydrobiologica (Cracow), 8(Suppl.), 21–32.Google Scholar
  10. Cameron, E. M. (1996). The hydrochemistry of the Fraser River, British Columbia: Seasonal variation in major and minor components. Journal of Hydrology (Amsterdam), 182, 209–215. doi: 10.1016/0022-1694(95)02924-9.CrossRefGoogle Scholar
  11. Chandra, R., Singh, S., & Raj, A. (2006). Seasonal bacteriological analysis of Gola River water contaminated with pulp paper mill waste in Uttaranchal, India. Environmental Monitoring and Assessment, 118, 393–406. doi: 10.1007/s10661-006-1508-4.CrossRefGoogle Scholar
  12. Chang, H. (2008). Spatial analysis of water quality trends in the Han River basin, South Korea. Water Research. doi: 10.1016/j.watres.2008.04.006.
  13. Djuikom, E., Njine, T., Nola, M., Sikati, V., & Jugnia, L.-B. (2006). Microbiological water quality of the Mfoundi River watershed at Yaoundé, Cameroon, as inferred from indicator bacteria of fecal contamination. Environmental Monitoring and Assessment, 122, 171–183. doi: 10.1007/s10661-005-9172-7.CrossRefGoogle Scholar
  14. Downing, A. L. (1971). Forecasting the effects of polluting discharges on natural waters—I. Rivers. The International Journal of Environmental Studies, 2(1), 101–110. doi: 10.1080/00207237108709452.CrossRefGoogle Scholar
  15. Fujita, T., Komemushi, S., & Yamagat, K. (1987). Relationship between environmental factors, yeats and coliforms in the Yodo River. Journal of Fermentation Technology, G5(2), 193–197. doi: 10.1016/0385-6380(87)90164-6.CrossRefGoogle Scholar
  16. Guissani, B., Monticelli, D., Gambillara, R., Pozzi, A., & Dossi, C. (2008). Three way principal component analysis of chemical data from lake Como watershed. Microchemical Journal, 88(2), 160–166. doi: 10.1016/j.microc.2007.11.006.CrossRefGoogle Scholar
  17. Jain, S. K., Agarwal, P. K., & Singh, V. P. (2007). Hydrology and water resources of India. Dordrecht, The Netherlands: Springer (13-978-1-4020-5180-7, e-book).Google Scholar
  18. Jonathan, M. P., Srinivasalu, S., Thangadurai, N., Ayyamperumal, T., Armstrong-Altrin, J. S., & Ram- Mohan, V. (2008). Contamination of Uppanar River and coastal water off Cuddalore, southeast coast of India. Environmental Geology, 53, 1391–1404. doi: 10.1007/s00254-007-0748-0.CrossRefGoogle Scholar
  19. Kakulu, S. E., & Osibanjo, O. (1992). Pollution studies of Nigerian rivers: Trace metal levels of surface waters in the Niger delta area. The International Journal of Environmental Studies, 41(3), 287–292. doi: 10.1080/00207239208710768.CrossRefGoogle Scholar
  20. Kannel, P. R., Seockhoen, L., Kanel, S. R., Khan, S. P., & Lee, Y.-S. (2007). Spatial–temporal variation and comparative assessment of water qualities of urban river system: A case study of the river Bagmati (Nepal). Environmental Monitoring and Assessment, 129, 433–459. doi: 10.1007/s10661-006-9375-6.CrossRefGoogle Scholar
  21. Kinnear, P. R., & Gray, C. D. (2000). SPSS for Windows made simple. Release 10. Sussex, UK: Psychology Press.Google Scholar
  22. Kistemann, T., Claßen, T., Koch, C., Dangendorf, F., Fischeder, R., Gebel, J., et al. (2002). Microbial load of drinking water reservoir tributaries during extreme rainfall and runoff. Applied and Environmental Microbiology, 68(5), 2188–2197. doi: 10.1128/AEM.68.5.2188-2197.2002.CrossRefGoogle Scholar
  23. Mahagoub, D. M., & Dirar, H. A. (1986). Microbial pollution of the Blue and White Niles at Khartoum. Environment International, 12, 603–609. doi: 10.1016/0160-4120(86)90102-9.CrossRefGoogle Scholar
  24. Manly, B. F. J. (1994). Multivariate statistical methods: A primer II ed. London, UK: Chapman and Hall.Google Scholar
  25. Miller, J. R., & Miller, S. M. O. (2007). Contaminated rivers: A geomorphological and geochemical approach to site assessment and remediation. Dordrecht, The Netherlands: Springer (xiv + 416p. e-book 13-978-1-4020-5602-4).Google Scholar
  26. Moiseenko, T. I., Gashkina, N. A., Sharova, Y. N., & Kudryavtseva, L. P. (2008). Ecotoxicological assessment of water quality and ecosystem health: A case study of the Volga River. Ecotoxicology and Environmental Safety. doi: 10.1016/j.ecoenv.2008.02.025.
  27. Pandit, S., Adhikary, S., & Roy, S. (1996). Species diversity of dipteran community in assessing the water quality of River Damodar at Durgapur, Panagarh and Burdwan in West Bengal. Environment and Ecology, 14, 800–805.Google Scholar
  28. Parlak, H., Çakır, A., Boyacıoğlu, M., & Arslan, Ö. Ç. (2006). Heavy metal deposition in sediments from the delta of the Gediz River (Western Turkey): A preliminary study. E.U. Journal of Fisheries & Aquatic Sciences, 23(3–4), 445–448.Google Scholar
  29. Pennington, A. T., Harding, A. K., Hendricks, C. W., & Campbell, H. M. K. (2001). Evaluating microbial indicators of environmental condition in Oregon Rivers. Environmental Management, 28(6), 833–841. doi: 10.1007/s002670010265.CrossRefGoogle Scholar
  30. Sharma, S., Dixit, S., Jain, P., Shah, K. W., & Vishwakarma, R. (2008). Statistical evaluation of hydrobiological parameters of Narmada River water at Hosangabad city, India. Environmental Monitoring and Assessment. doi: 10.1007/s10661-007-9968-8.
  31. Singh, K. P., Malik, A., Sinha, S., Singh, V. K., & Murthy, R. C. (2005a). Estimation of source of heavy metal contamination in sediments of Gomti river (India) using principal component analysis. Water, Air, and Soil Pollution, 166, 321–341. doi: 10.1007/s11270-005-5268-5.CrossRefGoogle Scholar
  32. Singh, K. P., Malik, A., & Singh, V. K. (2005b). Chemometric analysis of hydro-chemical data of an alluvial river—A case study. Water, Air, and Soil Pollution, 170, 383–404. doi: 10.1007/s11270-005-9010-0.CrossRefGoogle Scholar
  33. Singh, V. K., Singh, K. P., & Mohan, D. (2005c). Status of heavy metals in water and bed sediments of River Gomti—A tributary of the Ganga River, India. Environmental Monitoring and Assessment, 105, 43–67. doi: 10.1007/s10661-005-2816-9.CrossRefGoogle Scholar
  34. Singh, K. P., Malik, A., Sinha, S., & Singh, V. K. (2007a). Multi-block data modeling for characterization of soil contamination: A case study. Water, Air, and Soil Pollution, 185, 79–93. doi: 10.1007/s11270-007-9432-y.CrossRefGoogle Scholar
  35. Singh, K. P., Singh, V. K., Malik, A., Sharma, N., Murthy, R. C., & Kumar, R. (2007b). Hydrochemistry of wet atmospheric precipitation over an urban area in Northern Indo-Gangetic Plains. Environmental Monitoring and Assessment, 131, 237–254. doi: 10.1007/s10661-006-9472-6.CrossRefGoogle Scholar
  36. Sood, A., Singh, K. D., Pandey, P., & Sharma, S. (2008). Assessment of bacterial indicators and physicochemiocal parameters to investigate pollution status of Gangetic river system of Uttarakhand (India). Ecological Indicators, 8(5), 709–717. doi: 10.1016/j.ecolind.2008.01.001.CrossRefGoogle Scholar
  37. Sundaray, S. K., Panda, U. C., Nayak, B. B., & Bhatta, D. (2006). Multivariate statistical techniques for the evaluation of the spatial and temporal variations in water quality of the Mahanadi river-estuarine system (India)—A case study. Environmental Geochemistry and Health, 28, 317–330. doi: 10.1007/s10653-005-9001-5.CrossRefGoogle Scholar
  38. Tallon, P., Magajna, B., & Lofranco, C. (2005). Microbial indicators of faecal contamination in water: A current perspective. Water, Air, and Soil Pollution, 166, 139–166. doi: 10.1007/s11270-005-7905-4.CrossRefGoogle Scholar
  39. Tiwary, R. K., & Dhar, B. B. (1994). Environmental pollution from coal mining activities in Damodar River basin, India. Mine Water and the Environment, 13, 1–10.Google Scholar
  40. Venter, S. N., Stenyberg, M. C., De Wet, C. M. E., Hohls, D., Du Plessis, G., & Kfir, R. (1997). A situational analysis of the microbial water quality in a periurban catchment in South Africa. Water Science and Technology, 35(11–12), 119–124. doi: 10.1016/S0273-1223(97)00245-X.CrossRefGoogle Scholar
  41. Wang, M., Webber, M., Finlayson, B., & Barnett, J. (2008). Rural industries and water pollution in China. Journal of Environmental Management, 86, 648–659. doi: 10.1016/j.jenvman.2006.12.019.CrossRefGoogle Scholar
  42. WHO (2006). Guidelines for drinking water quality. First addendum to third edition (Vol. 1). Recommendations. ISBN 924-15-4696-4.Google Scholar
  43. Yidana, S. M., Ophoria, D., & Banoeng-Yakubob, B. (2008). A multivariate statistical analysis of surface water chemistry data—The Ankobra Basin, Ghana. Journal of Environmental Management, 86, 80–87. doi: 10.1016/j.jenvman.2006.11.023.CrossRefGoogle Scholar
  44. Zar, J. H. (1999). Biostatistical analysis (4th ed.). Singapore: Pearson Education.Google Scholar
  45. Zheng, N., Wang, Q., Liang, Z., & Zheng, D. (2008). Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environmental Pollution, 154, 135–142. doi: 10.1016/j.envpol.2008.01.001.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Soroj Kumar Chatterjee
    • 1
  • Indranil Bhattacharjee
    • 1
  • Goutam Chandra
    • 1
  1. 1.Department of Zoology, Mosquito and Microbiology Research Units, Parasitology LaboratoryThe University of BurdwanBurdwanIndia

Personalised recommendations