Advertisement

Spatial distribution and quantification of endocrine-disrupting chemicals in Sado River estuary, Portugal

  • Cláudia Ribeiro
  • Miguel Ângelo Pardal
  • Maria Elizabeth Tiritan
  • Eduardo Rocha
  • Rui Miguel Margalho
  • Maria João Rocha
Article

Abstract

The important Portuguese Sado River estuary has never been investigated for the presence of potentially endocrine-disrupting chemicals (EDCs), such as natural estrogens (estradiol, estrone), pharmaceutical estrogens (17α-ethynylestradiol), phytoestrogens (daidzein, genistein and biochanin A), or industrial chemicals (4-octylphenol, 4-nonylphenol, and bisphenol A). Thus, the main objective of this study was to evaluate their presence at 13 sampling points distributed between both the industrial and the natural reserve areas of the estuary, zones 1 and 2, respectively. For that, water samples collected in summer and winter were processed by solid phase extraction and analyzed by high-performance liquid chromatography with photodiode array detection and gas chromatography–mass spectroscopy. Results showed that estrone, ethynylestradiol, all the aforementioned phytoestrogens as well as bisphenol A and 4-octylphenol were found in zone 1. In zone 2, neither estrogens nor 4-OP were found. However, in the same zone, daidzein (500 ng/L) and genistein (320 ng/L) attained their highest levels in summer, whereas biochanin A peaked in winter (170 ng/L). Furthermore, bisphenol A was also found in some areas of zone 2, but showed similar concentrations in both surveys (about 220 ng/L). This study demonstrated that the Sado River estuary had low EDCs levels, suggesting that the Sado’s high hydrodynamic activity may be involved in the dilution of local pollution. It was suggested that at the current levels of concentrations, all assayed EDCs are unlikely to individually cause endocrine disruption in local animals. However, under a continuous exposure scenario, an additive and/or synergistic action of the estrogenic chemicals load can not be excluded, and so, continuous monitoring is advisable.

Keywords

Biochanin-A Bisphenol-A Daidzein Endocrine-disrupting chemicals (EDCs) Genistein Phytoestrogens Sado River estuary 

Supplementary material

10661_2008_639_MOESM1_ESM.doc (38 kb)
Scheme 1 (DOC 37.5 KB)

References

  1. Ahel, M., & Giger, W. (1993). Partitioning of alkylphenols and alkylphenol polyethoxylates between water and organic-solvents. Chemosphere, 26, 1471–1478. doi:10.1016/0045-6535(93)90214-P.CrossRefGoogle Scholar
  2. Almeida, C., Serôdio, P., Florêncio, M. H., & Nogueira, J. M. F. (2007). New strategies to screen for endocrine-disrupting chemicals in the Portuguese marine environment utilizing large volume injection-capillary gas chromatography-mass spectrometry combined with retention time locking libraries (LVI-GC-MS-RTL). Analytical and Bioanalytical Chemistry, 387, 2569–2583. doi:10.1007/s00216-006-1101-2.CrossRefGoogle Scholar
  3. Ballesteros, O., Zafra, A., Navalon, A., & Vilchez, J. L. (2006). Sensitive gas chromatographic-mass spectrometric method for the determination of phthalate esters, alkylphenols, bisphenol A and their chlorinated derivatives in wastewater samples. Journal of Chromatography. A, 1121, 154–162. doi:10.1016/j.chroma.2006.04.014.CrossRefGoogle Scholar
  4. Bolz, U., Hagenmaier, H., & Korner, W. (2001). Phenolic xenoestrogens in surface water, sediments, and sewage sludge from Baden-Wurttemberg, south-west Germany. Environmental Pollution, 115, 291–301. doi:10.1016/S0269-7491(01)00100-2.CrossRefGoogle Scholar
  5. Caeiro, S., Costa, M. H., Ramos, T. B., Fernandes, F., Silveira, N., Coimbra, A., et al. (2005). Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. Ecological Indicators, 5, 151–169. doi:10.1016/j.ecolind.2005.02.001.CrossRefGoogle Scholar
  6. Catarino, J., Peneda, M. C., & Santana, F. (1987). Estudo do impacto da indústria no estuário do Rio Sado. Estimativas da poluição afluente. Instituto Nacional de Engenharia e Tecnologia Industrial, Lisbon, Portugal: DEII, INETI.Google Scholar
  7. Cespedes, R., Lacorte, S., Raldua, D., Ginebreda, A., Barceló, D., & Pina, B. (2005). Distribution of endocrine disruptors in the Llobregat River basin (Catalonia, NE Spain). Chemosphere, 61, 1710–1719. doi:10.1016/j.chemosphere.2005.03.082.CrossRefGoogle Scholar
  8. Ferreira, J. G., Nobre, A. M., Sirnas, T. C., Silva, M. C., Newton, A., Bricker, S. B., et al. (2006). A methodology for defining homogeneous water bodies in estuaries—application to the transitional systems of the EU Water Framework Directive. Estuarine, Coastal and Shelf Science, 66, 468–482. doi:10.1016/j.ecss.2005.09.016.CrossRefGoogle Scholar
  9. Ferreira, J. G., Simas, T., Schifferegger, K., & Lencart-Silva, J. (2002). Identification of sensitive areas and vulnerable zones in four Portuguese Estuaries. INAG–Instituto da Água, IMAR–Institute of Marine Research.Google Scholar
  10. Ferreira, A. M., & Vale, C. (2001). Seasonal and inter-annual variations of PCB and DDT contents in the oyster Crassostrea angulata from the Sado Estuary (Portugal). Ciencias Marinas, 27, 255–268.Google Scholar
  11. International Conference on Harmonisation ICH (1996). Validation of analytical procedures: Methodology, Q. 2B (CPMP/ICH/281/96). London: The European Agency for the Evaluation of Medicinal Products.Google Scholar
  12. Jobling, S., Beresford, N., Nolan, M., Rodgers-Gray, T., Brighty, G. C., Sumpter, J. P., et al. (2002). Altered sexual maturation and gamete production in wild roach (Rutilus rutilus) living in rivers that receive treated sewage effluents. Biology of Reproduction, 66, 272–281. doi:10.1095/biolreprod66.2.272.CrossRefGoogle Scholar
  13. Johnson, A. C., Belfroid, A., & Di Corcia, A. (2000). Estimating steroid oestrogen inputs into the activated sludge treatment works and observation on their removal from the effluent. The Science of the Total Environment, 256, 163–173. doi:10.1016/S0048-9697(00)00481-2.CrossRefGoogle Scholar
  14. Kiparissis, Y., Balch, G. C., Metcalfe, T. L., & Metcalfe, C. D. (2003). Effects of the isoflavones genistein and equol on the gonadal development of Japanese medaka (Oryzias latipes). Environmental Health Perspectives, 111, 1158–1163.Google Scholar
  15. Lagana, A., Bacaloni, A., De Leva, I., Faberi, A., Fago, G., & Marino, A. (2004). Analytical methodologies for determining the occurrence of endocrine disrupting chemicals in sewage treatment plants and natural waters. Analytica Chimica Acta, 501, 79–88. doi:10.1016/j.aca.2003.09.020.CrossRefGoogle Scholar
  16. Lee, S. H., Jung, B. H., Kim, S. Y., & Chung, B. C. (2004). Determination of phytoestrogens in traditional medicinal herbs using gas chromatography–mass spectrometry. The Journal of Nutritional Biochemistry, 15, 452–460. doi:10.1016/j.jnutbio.2004.01.007.CrossRefGoogle Scholar
  17. Liggins, J., Mulligan, A., Runswick, S., & Bingham, S. A. (2002). Daidzein and genistein content of cereals. European Journal of Clinical Nutrition, 56, 961–966. doi:10.1038/sj.ejcn.1601419.CrossRefGoogle Scholar
  18. Lintelmann, J., Katayama, A., Kurihara, N., Shore, L., & Wenzel, A. (2003). Endocrine disruptors in the environment—(IUPAC Technical Report). Pure and Applied Chemistry, 75, 631–681. doi:10.1351/pac200375050631.CrossRefGoogle Scholar
  19. Mills, L. J., & Chichester, C. (2005). Review of evidence: Are endocrine-disrupting chemicals in the aquatic environment impacting fish populations? The Science of the Total Environment, 343, 1–34. doi:10.1016/j.scitotenv.2004.12.070.CrossRefGoogle Scholar
  20. Moreira, S. M., Lima, I., Ribeiro, R., & Guilhermino, L. (2006). Effects of estuarine sediment contamination on feeding and on key physiological functions of the polychaete Hediste diversicolor: Laboratory and in situ assays. Aquatic Toxicology (Amsterdam, Netherlands), 78, 186–201. doi:10.1016/j.aquatox.2006.03.001.Google Scholar
  21. Pessoa, M. F., Fernando, A., & Oliveira, J. S. (2001). Use of imposex (pseudohermaphroditism) as indicator of the occurrence of organotin compounds in Portuguese coastal waters—Sado and Mira estuaries. Environmental Toxicology, 16, 234–241. doi:10.1002/tox.1029.CrossRefGoogle Scholar
  22. Quevauviller, P., Lavigne, R., Pinel, R., & Astruc, M. (1989). Organotins in sediments and mussels from the Sado Estuarine system (Portugal). Environmental Pollution, 57, 149–166. doi:10.1016/0269-7491(89)90007-9.CrossRefGoogle Scholar
  23. Ribeiro, C., Tiritan, M. E., Rocha, E., & Rocha, M. J. (2007). Development and validation of a HPLC-DAD method for determination of several endocrine disrupting compounds in estuarine water. Journal of Liquid Chromatography & Related Technologies, 30, 2729–2746. doi:10.1080/10826070701560652.CrossRefGoogle Scholar
  24. Ribeiro, C., Pardal, M. A., Martinho, F., Margalho, R., Tiritan, M. E., Rocha, E., et al. (2008a). Distribution of endocrine disruptors in the Mondego River estuary, Portugal. Environmental Monitoring and Assessment, (in press). doi:10.1007/s10661-10008-10192-y.
  25. Ribeiro, C., Tiritan, M. E., Rocha, E., & Rocha, M. J. (2008b). Seasonal and spatial distribution of several endocrine disrupting compounds in the Douro River estuary, Portugal. Archives of Environmental Contamination and Toxicology, (in press). doi:10.1007/s00244-008-9158-x.
  26. Shareef, A., Angove, M. J., & Wells, J. D. (2006). Optimization of silylation using N-methyl-N-(trimethylsilyl)-trifluoroacetamide, N,O-bis-(trimethylsilyl)-trifluoroacetamide and 4N4-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide for the determination of the estrogens estrone and 17[alpha]-ethinylestradiol by gas chromatography–mass spectrometry. Journal of Chromatography. A, 1108, 121–128. doi:10.1016/j.chroma.2005.12.098.CrossRefGoogle Scholar
  27. Silva, E., Batista, S., Viana, P., Antunes, P., Serôdio, L., Cardoso, A. T., et al. (2006). Pesticides and nitrates in groundwater from oriziculture areas of the ‘Baixo Sado’ region (Portugal). International Journal of Environmental Analytical Chemistry, 86, 955–972. doi:10.1080/03067310600833336.CrossRefGoogle Scholar
  28. Silveira, M. (2007). Identification of endocrine disrupters in superficial waters of Douro River estuary. Dissertation, University of Porto, Portugal.Google Scholar
  29. Sousa, A., Mendo, S., & Barroso, C. (2005). Imposex and organotin contamination in Nassarius reticulatus (L.) along the Portuguese coast. Applied Organometallic Chemistry, 19, 315–323. doi:10.1002/aoc.856.CrossRefGoogle Scholar
  30. Staples, C. A., Woodburn, K., Caspers, N., Hall, A. T., & Klecka, G. M. (2002). A weight of evidence approach to the aquatic hazard assessment of bisphenol A. Human and Ecological Risk Assessment, 8, 1083–1105. doi:10.1080/1080-700291905837.CrossRefGoogle Scholar
  31. Vasconcelos, R. P., Reis-Santos, P., Fonseca, V., Maia, A., Ruano, M., Franca, S., et al. (2007). Assessing anthropogenic pressures on estuarine fish nurseries along the Portuguese coast: A multi-metric index and conceptual approach. The Science of the Total Environment, 374, 199–215. doi:10.1016/j.scitotenv.2006.12.048.CrossRefGoogle Scholar
  32. Vethaak, A. D., Lahr, J., Schrap, S. M., Belfroid, A. C., Rijs, G. B. J., Gerritsen, A., et al. (2005). An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. Chemosphere, 59, 511–524. doi:10.1016/j.chemosphere.2004.12.053.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Cláudia Ribeiro
    • 1
    • 2
    • 3
    • 4
  • Miguel Ângelo Pardal
    • 5
  • Maria Elizabeth Tiritan
    • 1
    • 3
  • Eduardo Rocha
    • 2
    • 4
  • Rui Miguel Margalho
    • 5
  • Maria João Rocha
    • 1
    • 2
  1. 1.Department of Pharmaceutical SciencesSuperior Institute of Health Sciences–North (ISCS-N)Gandra PRDPortugal
  2. 2.Interdisciplinary Centre for Marine and Environmental Research (CIIMAR), CIMAR Associate Laboratory (CIMAR LA)University of Porto (UPorto)PortoPortugal
  3. 3.Centre of Studies of Organic ChemistryPhytochemistry and Pharmacology of the University of Porto (CEQOFFUP)PortoPortugal
  4. 4.Institute of Biomedical Sciences Abel Salazar (ICBAS)University of Porto (UPorto)PortoPortugal
  5. 5.IMAR—Institute of Marine Research, Department of ZoologyUniversity of CoimbraCoimbraPortugal

Personalised recommendations