The relationship between whole effluent toxicity (WET) and chemical-based effluent quality assessment in Vojvodina (Serbia)

  • Ivana Teodorović
  • Milena Bečelić
  • Ivana Planojević
  • Ivana Ivančev-Tumbas
  • Božo Dalmacija


The relationship between whole effluent toxicity (WET) and chemical-based effluent quality assessment across a range of effluent types was examined for the first time in Serbia. WET was determined by Daphnia magna acute tests, while chemical-based toxicity was taken as theoretical for concentrations of priority chemicals and effluent quality assessment based on the valid Serbian regulations. A poor correlation was found between WET and chemical-based effluent quality assessment: positive toxicity tests were found, in general, in cases where samples satisfied the requirements of mandatory effluent monitoring. Statistically insignificant correlation between the predicted and observed toxicity indicated that the presence of priority substances accounted to the overall toxicity only to a certain degree, most probably due to a rather short list of priority pollutants regularly analysed in effluents. Current monitoring requirements neglect hazards that derive from potentially present toxicants and unpredictable toxicity of complex mixtures, which led to poor correlation between the WET and chemical-based results in this study.


WET Acute tests Daphnia magna Priority pollutants 


  1. Altenburger, R., Backhause, T., Boedeker, W., Faust, M., Scholze, M., & Grimme, L. H. (2000). Predictability of the toxicity of multiple chemical mixtures to Vibrio fisheri: Mixtures composed of similarly acting chemicals. Environmental Toxicology and Chemistry, 19(9), 2341–2347. doi:10.1897/1551-5028(2000)019<2341:POTTOM>2.3.CO;2.CrossRefGoogle Scholar
  2. APHA, AWWA, WPCF (1995). Standard methods for examination of water and wastewater. Denver: AWWA.Google Scholar
  3. Araujo, C. V. M., Nascimento, R. B., Oliveira, C. A., Strotmann, U. J., & da Silva, E. M. (2005). The use of Microtox to assess toxicity removal of industrial effluents from the industrial district of Camacari (BA, Brazil). Chemosphere, 58, 1277–1281. doi:10.1016/j.chemosphere.2004.10.036.CrossRefGoogle Scholar
  4. Backhaus, T., Altenburger, R., Boedeker, W., Faust, M., Scholze, M., & Grimme, L. H. (2000). Predictability of the toxicity of a multiple mixtures of dissimilarly acting chemicals to Vibrio fisheri. Environmental Toxicology and Chemistry, 19(9), 2348–2356. doi:10.1897/1551–5028(2000)019<2348:POTTOA>2.3.CO;2.CrossRefGoogle Scholar
  5. Barata, C., Alañon, P., Gutierrez-Alonso, S., Riva, M. C., Fernández, C., & Tarazona, J. V. (2008). A Daphnia magna feeding bioassay as a cost effective and ecological relevant sublethal toxicity test for environmental risk assessment of toxic effluents. Science of the Total Environment, 405(1–3), 78–86. doi:10.1016/j.scitotenv.2008.06.028.CrossRefGoogle Scholar
  6. Barata, C., Baird, D. J., & Markich, S. J. (1999). Comparing metal toxicity among Daphnia magna clones: An approach using concentration—time-response surfaces. Archives of Environmental Contamination and Toxicology, 37, 326–331. doi:10.1007/s002449900521.CrossRefGoogle Scholar
  7. Benfenati, E., Barcelo, D., Johnson, I., Galassi, S., & Levsen, K. (2003). Emerging organic contaminants in leachates from industrial waste landfills and industrial effluent. Trends in Analytical Chemistry, 22(10), 757–765. doi:10.1016/S0165-9936(03)01004-5.CrossRefGoogle Scholar
  8. Boillot, C., Bazin, C., Tissot-Guerraz, F., Droguet, J., Perraud, M., Cetre, J. C., et al. (2008). Daily physicochemical, microbiological and ecotoxicological fluctuations of a hospital effluent according to technical and care activities. Science of the Total Environment, 403, 113–129. doi:10.1016/j.scitotenv.2008.04.037.CrossRefGoogle Scholar
  9. Brack, W. (2003). Effect-directed analysis: A promising tool for the identification of organic toxicants in complex mixtures? Analytical and Bioanalytical Chemistry, 377, 397–407. doi:10.1007/s00216-003-2139-z.CrossRefGoogle Scholar
  10. Caffaro-Filho, R. A., Morita, D. M., Wagner, R., & Durrant, L. R. (2008). Toxicity-directed approach of polyester manufacturing industry wastewater provides useful information for conducting treatability studies. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2008.06.063.
  11. Castillo, G. C., Vila, I. C., & Neild, E. (2000). Ecotoxicity assessment of metals and wastewater using multitrophic assays. Environmental Toxicology, 15, 370–375. doi:10.1002/1522-7278(2000)15:5<370::AID-TOX3>3.0.CO;2-S.CrossRefGoogle Scholar
  12. Cedergreen, N., Christensen, A., Kamper, A., Kudsk, P., Mathiassen, S. K., Streibig, J., et al. (2008). A review of independent action compared to concentration addition as reference models for mixtures of compounds with different molecular target sites. Environmental Toxicology and Chemistry, 27(7), 1621–1632. doi:10.1897/07-474.CrossRefGoogle Scholar
  13. Chapman, P. M. (2000). Whole effluent toxicity testing—usefulness, level of protection and risk assessment. Environmental Toxicology and Chemistry, 19(1), 3–13. doi:10.1897/1551-5028(2000)019<0003:WETTUL>2.3.CO;2.CrossRefGoogle Scholar
  14. Council Directive 78/659/EEC of 18 July 1978 on the quality of fresh waters needing protection or improvement in order to support fish life Official Journal L 222, 14/08/1978 P. 0001–0010.Google Scholar
  15. De Schamphelaere, K., & Janssen, C. (2002). A biotic ligand model predicting acute copper toxicity for Daphnia magna: The effects of calcium, magnesium, sodium, potassium, and pH. Environmental Science & Technology, 36, 48–54. doi:10.1021/es000253s.CrossRefGoogle Scholar
  16. Di Marzio, W. D. M., Saenz, M., Alberdi, J., Tortorelli, M., & Galassi, S. (2005). Risk assessment of domestic and industrial effluents unloaded into a freshwater environment. Ecotoxicology and Environmental Safety, 61, 380–391. doi:10.1016/j.ecoenv.2004.10.002.CrossRefGoogle Scholar
  17. Eunhee, K., You-Ree, J., Hun-Je, J., Seung-Bo, S., & Jinho, J. (2008). Toxicity identification in metal plating effluent: Implications in establishing effluent discharge limits using bioassays in Korea. Marine Pollution Bulletin, 57, 637–644. doi:10.1016/j.marpolbul.2008.02.042.CrossRefGoogle Scholar
  18. Gomez, C., Contento, L., & Carsen, A. (2001). Toxicity tests to assess pollutants removal during wastewater treatment and the quality of receiving waters in Argentina. Environmental Toxicology, 16, 217–224. doi:10.1002/tox.1027.CrossRefGoogle Scholar
  19. Guerra, R. (2001). Ecotoxicological and chemical assessment of phenolic compounds in industrial effluents. Chemosphere, 44, 1737–1747. doi:10.1016/S0045-6535(00)00562-2.CrossRefGoogle Scholar
  20. Gutiérrez, S., Fernández, C., Escher, B. I., & Tarazona, J. V. (2008). A new hazard index of complex mixtures integrates bioconcentration and toxicity to refine the environmental risk assessment of effluents. Environment International, 34, 773–781. doi:10.1016/j.envint.2008.01.002.CrossRefGoogle Scholar
  21. Hernando, M. D., Fernandez-Alba, A. R., Tauler, R., & Barcelo, D. (2005). Toxicity assays applied to wastewater treatment. Talanta, 65, 358–366. doi:10.1016/j.talanta.2004.07.012.CrossRefGoogle Scholar
  22. ISO (International Organization for Standardization) (1996). Determination of the inhibition of mobility of Daphnia magna Straus (Cladocera, Crustacea)—Acute toxicity test. ISO 6341-1996 and technical Corrigendum I: 1998. Geneva, Switzerland.Google Scholar
  23. Kramer, K. J. M., Jak, R. G., Van Hattum, B., Hooftman, R. N., & Zwolsman, J. J. G. (2004). Copper toxicity in relation to surface water-dissolved organic matter: Biological effects to Daphnia magna. Environmental Toxicology and Chemistry, 23(12), 2971–2980. doi:10.1897/03-501.1.CrossRefGoogle Scholar
  24. Kwon, J. H., Lee, H. K., Kwon, J. W., Kim, K., Park, E., Kang, M. H., et al. (2008). Mutagenic activity of river water from a river near textile industrial complex in Korea. Environmental Monitoring and Assessment, 142, 289–296. doi:10.1007/s10661-007-9928-3.CrossRefGoogle Scholar
  25. Maltby, L., Clayton, S. A., Yu, H., McLaughlin, R. M., Wood, D., & Yin, D. (2000). Using single species toxicity tests, community-level responses and toxicity identification evaluations to investigate effluent impacts. Environmental Toxicology and Chemistry, 19(1), 151–157. doi:10.1897/1551-5028(2000)019<0151:USSTTC>2.3.CO;2.CrossRefGoogle Scholar
  26. Manusadzianas, L., Balkelyte, L., Sadauskas, K., Blinova, I., Pollumaa, L., & Kahru, A. (2003). Ecotoxicological study of Lithuanian and Estonian wastewaters: Selection of the biotests, and correspondence between toxicity and chemical-based indices. Aquatic Toxicology (Amsterdam, Netherlands), 63, 27–41. doi:10.1016/S0166-445X(02)00132-7.Google Scholar
  27. Mendonca, E., Picado, A., Silva, L., & Anselmo, A. M. (2007). Ecotoxicological evaluation of cork-boiling wastewaters. Ecotoxicology and Environmental Safety, 66, 384–390. doi:10.1016/j.ecoenv.2006.02.013.CrossRefGoogle Scholar
  28. OGFRY (Official Gazette of FRY) (1978). Uredba o klasifikaciji voda međurepubličkih vodotoka, meuđržavnih voda i voda obalnog mora Jugoslavije. Službeni list SFRJ, 6/1978, 145–147.Google Scholar
  29. OGRS (Official Gazette of Republic of Serbia) (1982). Pravilnik o opasnim materijama u vodama. Službeni glasnik SRS, 31/82, 1516–1518.Google Scholar
  30. OGRS (Official Gazette of Republic of Serbia) (1983). Službeni glasnik SRS. Pravilnik o načinu i minimalnom broju ispitivanja kvaliteta otpadnih voda. Službeni glasnik SRS, 47/83 2110–2111.Google Scholar
  31. OSPAR (Oslo and Paris Commission) (2000). Point and diffuse sources: OSPAR background document concerning the elaboration of programmes and measures related to whole effluent assessment (WEA).Google Scholar
  32. Picado, A., Mendonca, E., Silva, L., Paixao, S. M., Brito, F., Cunha, M. A., et al. (2008). Ecotoxicological assessment of industrial wastewaters in trancao river basin (Portugal). Environmental Toxicology, 23, 466–472. doi:10.1002/tox.20359.CrossRefGoogle Scholar
  33. Power, E. A., & Boumphrey, R. S. (2004). International trends in bioassay use for effluent management. Ecotoxicology (London, England), 13, 377–398. doi:10.1023/B:ECTX.0000035290.89590.03.Google Scholar
  34. Ra, J. S., Kim, H. K., Chang, N. I., & Kim, S. D. (2006a). Whole effluent toxicity (WET) tests on wastewater treatment plants with Daphnia magna and Selenastrum capricornutum. Environmental Monitoring and Assessment, 129(1–3), 107–113. doi:10.1007/s10661-006-9431-2.Google Scholar
  35. Ra, J. S., Lee, B. C., Chang, N. I., & Kim, S. D. (2006b). Estimating the combined toxicity by two-step prediction model on the complicated chemical mixtures from wastewater treatment plant effluents. Environmental Toxicology and Chemistry, 25(8), 2107–2113. doi:10.1897/05-484R.1.CrossRefGoogle Scholar
  36. Ra, J. S., Lee, B. J., Chang, N. I., & Kim, S. D. (2008). Comparative whole effluent toxicity assessment of wastewater treatment plant effluents using Daphnia magna. Bulletin of Environmental Contamination and Toxicology, 80, 196–200. doi:10.1007/s00128-007-9344-y.CrossRefGoogle Scholar
  37. Rodriguez, P., Martinez-Madrid, M., & Cid, A. (2006). Ecotoxicological assessment of effluents in the Basque country (Northern Spain) by acute and chronic toxicity tests using Daphnia magna Straus. Ecotoxicology (London, England), 15, 559–572. doi:10.1007/s10646-006-0091-3.Google Scholar
  38. Sarakinos, H. C., Bermingham, N., White, P. A., & Rasmussen, J. B. (2000). Correspondence between whole effluent toxicity and the presence of priority substances in complex industrial effluents. Environmental Toxicology and Chemistry, 19(1), 63–71. doi:10.1897/1551-5028(2000)019<0063:CBWETA>2.3.CO;2.CrossRefGoogle Scholar
  39. Sponza, D. T. (2002). Necessity of toxicity assessment in Turkish industrial discharges (examples from metal and textile industry effluents). Environmental Monitoring and Assessment, 73, 41–66. doi:10.1023/A:1012663213153.CrossRefGoogle Scholar
  40. Teodorovic, I., & Mauric, N. (2003). TesTox version 1.0.Google Scholar
  41. Teodorovic, I., & Planojevic, I. (2008). Daphnia magna culturing methods – implications on chronic toxicity tests. Fresenius Environmental Bulletin, 17(8), 985–991.Google Scholar
  42. Tinsley, D., Wharfe, J., Campbell, D., Chown, P., Taylor, D., Upton, J., et al. (2004). The use of direct toxicity assessment in the assessment and control of complex effluents in the UK: A demonstration programme. Ecotoxicology (London, England), 13, 423–436. doi:10.1023/B:ECTX.0000035293.45360.f6.Google Scholar
  43. Tonkes, M., De Graaf, P. J. F., & Graansma, J. (1999). Assessment of complex industrial effluents in the Netherlands using a whole effluent toxicity (or wet) approach. Water Science and Technology, 39, 55–61. doi:10.1016/S0273-1223(99)00253-X.CrossRefGoogle Scholar
  44. USEPA (US Environmental Protection Agency) (1994). Interim guidance on determination and use of water effect ratios for metals. Washington, DC: USEPA. EPA-823-B-94-001.Google Scholar
  45. USEPA (U.S. Environmental Protection Agency) (2002). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 4th edn. Washington, DC: USEPA. EPA/600/4-90/027F.Google Scholar
  46. USEPA (US Environmental Protection Agency) (2008). AQUIRE database.

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Ivana Teodorović
    • 1
  • Milena Bečelić
    • 2
  • Ivana Planojević
    • 1
  • Ivana Ivančev-Tumbas
    • 2
  • Božo Dalmacija
    • 2
  1. 1.Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.Department of Chemistry, Faculty of SciencesUniversity of Novi SadNovi SadSerbia

Personalised recommendations