Environmental Monitoring and Assessment

, Volume 158, Issue 1–4, pp 117–137 | Cite as

Distribution and speciation of selected metals in surface sediments, from the tropical Zuari estuary, central west coast of India



Estuarine sediments are major reservoirs for the metals. Distribution and mobility of metals within estuaries depends strongly on their specific chemical form. In the present study, surface sediments from Zuari estuary, Goa were analysed by a sequential procedure for Fe, Mn, Cu, Zn, Cr and Co to determine their distribution in five geochemical phases (Exchangeable, carbonate, Fe–Mn oxide (reducible) organic bound (oxidisable) and residual). The total metal content, sand, silt, clay and organic carbon were also determined of the surface sediments. The total metal contents were found to be greater than the background concentrations of average shale values as well as to that of earlier studies indicating enrichment probably due to the anthropogenic origin of metals. The results obtained from sequential procedure showed that among the studied elements, Mn and Co are potentially available in the bioavailable fractions (exchangeable, carbonate and Fe–Mn oxide bound fractions) indicating their importance in toxicity whereas rest of the metals viz. Fe, Cu, Zn and to some extent Cr are largely available in residual phase although they are available in other fractions. The main source of metals to the estuary is mining and its associated activities in the study area. Chemical speciation by sequential extraction procedure has helped in assessing the mobility, bioavailability, diagenesis and toxicity of metals and hence giving a better insight into the ultimate fate of pollutants, which are introduced into the estuarine environment. To understand the risk of the metals to the sediment dwelling organisms the data were compared with the Sediment Quality Values (SQV) using SQUIRT. Also, correlation and Factor analysis were carried out to understand the associations of metals in the different fractions with sand, silt, clay, organic carbon and with other metals.


Estuary Metals Sediment Speciation Bioavailability Pollution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Algan, O., Balkis, N., Cagatay, M. N., & Sari, E. (2004). The sources of metal contents in the shelf sediments from the Marmara Sea, Turkey. Environmental Geology, 46, 932–950. doi:10.1007/s00254-004-1104-2.CrossRefGoogle Scholar
  2. Badri, M. A., & Aston, S. R. (1983). Observations on heavy metal geochemical associations on polluted and non polluted estuarine sediments. Environmental Pollution, B6, 181–193.Google Scholar
  3. Baeyens, W., Monteny, F., Leermaakers, M., & Boullion, S. (2003). Evaluation of sequential extractions on dry and wet sediments. Analytical and Bioanalytical Chemistry, 376, 890–901. doi:10.1007/s00216-003-2005-z.CrossRefGoogle Scholar
  4. Banerjee, A. D. K. (2003). Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 123, 95–105. doi:10.1016/S0269-7491(02)00337-8.CrossRefGoogle Scholar
  5. Bendell-Young, L. I., & Harvey, H. H. (1992). The relative importance of manganese and iron oxides and organic matter in the sorption of trace metals by surficial lake sediments. Geochimica et Cosmochimica Acta, 56, 1175–1186. doi:10.1016/0016-7037(92)90055-N.CrossRefGoogle Scholar
  6. Binning, K., & Baird, D. (2001). Survey of heavy metals in the sediments of the Swartkops River Estuary, Port Elizabeth South Africa. Water S.A, 27(4), 461–466.Google Scholar
  7. Buchman, M. F. (1999). NOAA screening quick reference tables. NOAA HAZMAT Report 99-1, (p. 12). Seattle, WA, Coastal Protection and Restoration Division, National Oceanic and Atmospheric Administration.Google Scholar
  8. Calmano, W., & Forstner, U. (1983). Chemical extraction of heavy metals in polluted river sediments in central Europe. The Science of the Total Environment, 28, 77–90. doi:10.1016/S0048-9697(83)80009-6.CrossRefGoogle Scholar
  9. Campbell, P. G. C. (1995). Interactions between trace metals and aquatic organisms: A critique of the free-ion activity model. In A. Tessier, & D. Turner (Eds.), Metal speciation and bioavailability in aquatic systems (pp. 45–102). England: Wiley.Google Scholar
  10. Canfield, D. E. (1989). Reactive iron in marine sediments. Geochimica et Cosmochimica Acta, 53, 619–632. doi:10.1016/0016-7037(89)90005-7.CrossRefGoogle Scholar
  11. Demirbas, A., Pehlivan, E., Gode, F., Altun, T., & Arslan, G. (2005). Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin. Journal of Colloid and Interface Science, 282, 20–25. doi:10.1016/j.jcis.2004.08.147.CrossRefGoogle Scholar
  12. Dollar, N. L., South, C. J., Filippelli, G. M., & Mastalerz, M. (2001). Chemical fractionation of metals in wetland sediments: Indiana dunes national lakeshore. Environmental Science & Technology, 35, 3608–3615. doi:10.1021/es0105764.CrossRefGoogle Scholar
  13. Eary, L. E., & Rai, D. (1988). Chromate removal from aqueous wastes by reduction with ferrous ion. Environmental Science & Technology, 22(8), 972–977. doi:10.1021/es00173a018.CrossRefGoogle Scholar
  14. Forstner, U., & Wittmann, G. T. W. (1979). Metal pollution in aquatic environment. Berlin: Springer.Google Scholar
  15. Frignani, M., & Belluci, L. G. (2004). Heavy metals in marine coastal sediments: Assessing sources, fluxes, history and trends. Annali di Chimica, 94, 1–8. doi:10.1002/adic.200490061.CrossRefGoogle Scholar
  16. Gonzalez, M. J., Ramos, L., & Hernandez, L. M. (1994). Distribution of trace metals in sediments and their relationship with their accumulation in earthworms. International Journal of Environmental Analytical Chemistry, 57, 135–150. doi:10.1080/03067319408027419.CrossRefGoogle Scholar
  17. Helz, G. R., Hugget, R. J., & Hill, J. M. (1975). Behaviour of Mn, Fe, Cu, Zn, Cd and Pb discharged from a wastewater treatment plant into an estuarine environment. Water Research, 9, 631–636. doi:10.1016/0043-1354(75)90168-2.CrossRefGoogle Scholar
  18. Hseu, Z. Y. (2006). Extractability and bioavailability of zinc over time in three tropical soils incubated with biosolids. Chemosphere, 63, 762–771. doi:10.1016/j.chemosphere.2005.08.014.CrossRefGoogle Scholar
  19. Huerta-Diaz, M. A., & Morse, J. W. (1992). Pyritisation of trace metals in anoxic marine sediments. Geochimica et Cosmochimica Acta, 56, 2681–2702. doi:10.1016/0016-7037(92)90353-K.CrossRefGoogle Scholar
  20. Jackson, M. L. (1958). Soil chemical analysis. New York: Prentice Hall.Google Scholar
  21. Jingchun, L., Chongling, Y., Macnair, M. R., Jun, H., & Yuhong, L. (2006). Distribution and speciation of some metals in mangrove sediments from Jiulong River Estuary, People’s Republic of China. Bulletin of Environmental Contamination and Toxicology, 76, 815–822. doi:10.1007/s00128-006-0992-0.CrossRefGoogle Scholar
  22. Jiries, A. (2003). Vehicular contamination of dust in Amman, Jordan. The Environmentalist, 23, 205–210. doi:10.1023/B:ENVR.0000017390.93161.99.CrossRefGoogle Scholar
  23. Jones, B., & Turki, A. (1997). Distribution and speciation of heavy metals in surfacial sediments from the Tees Estuary, North-east England. Marine Pollution Bulletin, 34(10), 768–779. doi:10.1016/S0025-326X(97)00047-7.CrossRefGoogle Scholar
  24. Kersten, M., & Forstner, U. (1989). Speciation of trace elements in sediments. In G. E. Batley (Ed.), Trace element speciation: Analytical methods and problems (pp. 243–317). Boca Raton, Florida: CRC.Google Scholar
  25. Kuo, S., Heilman, P. E., & Baker, A. S. (1983). Distribution and forms of copper, zinc cadmium, iron and manganese in soils near a copper smelter. Soil Science, 135, 101–119. doi:10.1097/00010694-198302000-00004.CrossRefGoogle Scholar
  26. Li, X., Poon, C., & Liu, P. S. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 16, 1361–1368. doi:10.1016/S0883-2927(01)00045-2.CrossRefGoogle Scholar
  27. Luoma, S. N., & Davis, J. A. (1983). Requirements of modelling trace metal partitioning in oxidised estuarine sediments. Marine Chemistry, 12, 159–181. doi:10.1016/0304-4203(83)90078-6.CrossRefGoogle Scholar
  28. Ma, L. Q., & Rao, G. N. (1997). Chemical fractionation of cadmium, copper, nickel and zinc in contaminated soils. Journal of Environmental Quality, 26, 259–264.CrossRefGoogle Scholar
  29. Mesquita, A. M., & Kaisary, S. (2007). Distribution of iron and manganese. In S. R. Shetye, M. Dileep Kumar, & D. Shankar (Eds.), The Mandovi and Zuari estuaries (pp. 99–104). Goa, India: NIO.Google Scholar
  30. Morel, F. M. M. (1983). Principles of aquatic chemistry. New York: Wiley.Google Scholar
  31. Niencheski, L. F. H., Baraj, B., Franca, R. G., & Mirlean, N. (2002). Lithium as a normalizer for the assessment of anthropogenic metal contamination of sediments of the southern area of Patos Lagoon. Aquatic Ecosystem Health & Management, 5, 473–483. doi:10.1080/14634980290001977.CrossRefGoogle Scholar
  32. Pedersen, T. F., & Price, N. B. (1982). The geochemistry of manganese carbonate in Panama Basin sediments. Geochimica et Cosmochimica Acta, 46, 59–68. doi:10.1016/0016-7037(82)90290-3.CrossRefGoogle Scholar
  33. Petersen, W., Wallmann, K., Li, P. L., Schroeder, F., & Knauth, H. D. (1995). Exchange of trace elements at the sediment–water interface during early diagenesis processes. Marine & Freshwater Research, 46, 19–26.Google Scholar
  34. Pizarro, I., Gomez, M., Camara, C., & Palacios, M. A. (2003). Arsenic speciation in environmental and biological samples. Analytica Chimica Acta, 495, 85–98. doi:10.1016/j.aca.2003.08.009.CrossRefGoogle Scholar
  35. Sagar, M. (1992). Chemical speciation and environmental mobility of heavy metals in sediments and soils. In M. Stoeppler (Ed.), Hazardous metals in the environment, techniques and instruments in analytical chemistry (pp. 133–175). Amsterdam: Elsevier.Google Scholar
  36. Savvides, C., Papadopoulos, A., Haralambous, K. J., & Loizidou, M. (1995). Sea sediments contaminated with heavy metals: Metals speciation and removal. Water Science and Technology, 32, 65–73. doi:10.1016/0273-1223(96)00077-7.CrossRefGoogle Scholar
  37. Singh, K. K. (2000). Studies on distribution of some trace metals in the Mandovi–Zuari estuarine systems of Goa, West Coast of India. M. Phil thesis, Dept of Marine Science, Goa, India.Google Scholar
  38. Soon, Y., Wilson, M. J., Moon, H. S., Bacon, J. R., & Basin, D. C. (1999). Chemical and mineralogical forms of lead, zinc and Camden in particle size fractions of some wastes, sediments and soils in Korea. Applied Geochemistry, 14, 621–633. doi:10.1016/S0883-2927(98)00093-6.CrossRefGoogle Scholar
  39. StatSoft. (1999). Statistica computer program, version 5.5. StatSoft, Tulsa, OK.Google Scholar
  40. Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851. doi:10.1021/ac50043a017.CrossRefGoogle Scholar
  41. Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the Earth’s crust. Geological Society of America Bulletin, 72, 175–192. doi:10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2.CrossRefGoogle Scholar
  42. Usero, J., Gamero, M., Morillo, J., & Gracia, I. (1998). Comparative study of three sequential extraction procedures for metals in marine sediments. Environmental International, 24, 478–496.CrossRefGoogle Scholar
  43. Walkey, A. (1947). A critical examination of a rapid method for determining organic carbon in soil. Soil Science, 63, 251–263.Google Scholar
  44. Yuan, C., Shi, J., He, B., Liu, J., Liang, L., & Jiang, G. (2004). Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International, 30, 769–783. doi:10.1016/j.envint.2004.01.001.CrossRefGoogle Scholar
  45. Zhang, J., Huang, W. W., & Martin, J. M. (1988). Trace metals distribution in Huanghe (Yellow River) estuarine sediments. Estuarine, Coastal and Shelf Science, 26, 499–526. doi:10.1016/0272-7714(88)90003-0.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Marine Science DepartmentGoa UniversityGoaIndia

Personalised recommendations