Skip to main content

Advertisement

Log in

Spatial variation in soil carbon in the organic layer of managed boreal forest soil—implications for sampling design

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

We studied within-site spatial variation of the carbon stock in the organic layer of boreal forest soil. A total of 1,006 soil samples were taken in ten forest stands (five Scots pine stands and five Norway spruce stands). Our results indicate that the spatial autocorrelation disappears at a distance of 75–225 cm. This spatial autocorrelation should be taken into account in the sampling design by locating the sampling points at adequate intervals. With a sample size of over 20–30 samples per site, additional soil samples do not notably improve the precision of the site mean estimate. An adequate sample size is dependent on the purpose of sampling and on the site-specific soil variation. Our results on the dependence between sample size and precision of the mean estimates can be applied in designing efficient soil monitoring in boreal coniferous forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahti, T., Hämet-Ahti, L., & Jalas, J. (1968). Vegetation zones and their sections in northwestern Europe. Annales Botanici Fennici, 5, 169–211.

    Google Scholar 

  • Birdsey, R. (2004). Data gaps for monitoring forest carbon in the United States: An inventory perspective. Environmental Management, 33, S1–S8. doi:10.1007/s00267-003-9113-6.

    Article  Google Scholar 

  • Cajander, A. K. (1926). The theory of forest types. Acta Forestalia Fennica, 29, 108.

    Google Scholar 

  • Cajander, A. K. (1949). Forest types and their significance. Acta Forestalia Fennica, 56, 71.

    Google Scholar 

  • Callesen, I., Liski, J., Raulund-Rasmussen, K., Olsson, M. T., Tau-Strands, L., Vesterdal, L., et al. (2003). Soil carbon stores in Nordic well-drained forest soils—relationships with climate and texture class. Global Change Biology, 9, 358–370. doi:10.1046/j.1365-2486.2003.00587.x.

    Article  Google Scholar 

  • Conant, R. T., & Paustian, K. (2002). Spatial variability of soil organic carbon in grasslands: Implications for detecting change at different scales. Environmental Pollution, 116, S127–S135. doi:10.1016/S0269-7491(01)00265-2.

    Article  CAS  Google Scholar 

  • Conant, R. T., Smith, G. B., & Paustian, K. (2003). Spatial variability of soil carbon in forested and cultivated sites: Implications for change detection. Journal of Environmental Quality, 32, 278–286.

    Article  CAS  Google Scholar 

  • Conen, F., Yakutin, M. V., & Sambuu, A. D. (2003). Potential for detecting changes in soil organic carbon concentrations resulting from climate change. Global Change Biology, 9, 1515–1520. doi:10.1046/j.1365-2486.2003.00689.x.

    Article  Google Scholar 

  • Conen, F., Zerva, A., Arrouays, D., Jolivet, C., Jarvis, P. G., Grace, J., et al. (2004). The carbon balance of forest soils: Detectability of changes in soil carbon stocks in temperate and boreal forests. In H. Griffith & P. G. Jarvis (Eds), The carbon balance of forest biomes (pp. 233–247). Oxford: Garland Science/BIOS Scientific.

    Google Scholar 

  • Cressie, N. A. C. (1993). Statistics for spatial data (928 p.). New York: Wiley.

    Google Scholar 

  • Ellert, B. H., Janzen, H. H., & McConkey, B. G. (2000). Measuring and comparing soil carbon storage. In R. Lal, et al. (Eds), Assessment methods for soil carbon (pp. 131–146). London: Lewis.

    Google Scholar 

  • Finnish Forest Research Institute. (2007). Finnish statistical yearbook of forestry (436 p.). Vantaa: Finnish Forest Research Institute.

    Google Scholar 

  • Gaudinski, J. B., Trumbore, S. E., Davidson, E. A., & Zheng, S. (2000). Soil carbon cycling in a temperate forest: Radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry, 51, 33–69. doi:10.1023/A:1006301010014.

    Article  Google Scholar 

  • Gustavsen, H. G., Roiko-Jokela, P. & varmola, M. (1988). Kivennäismaiden talosumetsien pysyvät (Inka ja Tinka) kokeet. Finnish Forest Research Institute Research Papers, 292, 212.

    Google Scholar 

  • IPCC. (2003a). Good practice guidance for land use, land-use change and forestry (295 p.). Hayama, Japan: IPCC National Greenhouse Gas Inventories Programme.

    Google Scholar 

  • IPCC. (2003b). Report on good practice guidance for land use, land-use change and forestry. IPCC National Greenhouse Gas Inventories Programme. Retrieved from http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.htm.

  • IPCC. (2006). Guidelines for national greenhouse gas inventories, agriculture, forestry and other land use (Vol. 4). IPCC National Greenhouse Gas Inventories Programme. Retrieved from http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.htm.

  • Jian-Bing, W., Du-Ning, X., Xing-Yi, Z., Xiu-Zhen, L., & Xiao-Yu, L. (2006). Spatial variability of soil organic carbon in relation to environmental factors of a typical small watershed in the black soil region, Northeast China. Environmental Monitoring and Assessment, 121, 597–613. doi:10.1007/s10661-005-9158-5.

    Article  CAS  Google Scholar 

  • Liski, J. (1995). Variation in soil organic carbon and thickness of soil horizons within a boreal forest stand—effect of trees and implications for sampling. Silva Fennica, 29, 255–266.

    Google Scholar 

  • Liski, J. (1997). Carbon storage of forest soils in Finland (Vol. 16, p. 46). University of Helsinki, Department of Forest Ecology Publications.

  • Liski, J., & Westman, C. J. (1995). Density of organic carbon in soil at coniferous forest sites in southern Finland. Biogeochemistry, 29, 183–197. doi:10.1007/BF02186047.

    Article  CAS  Google Scholar 

  • Mäkipää, R., Häkkinen, M., Peltoniemi, M. & Muukkonen, P. (2008a). Monitoring changes in the carbon stock of forest soils—costs of different sampling protocols. Boreal Environment Research (in press).

  • Mäkipää, R., Lehtonen, A., & Peltoniemi, M. (2008b). Monitoring carbon stock changes in European forests using forest inventory data. In H. Dolman, et al. (Eds), The Continental-scale greenhouse gas balance of Europe (pp. 191–210). Berlin: Springer.

    Chapter  Google Scholar 

  • Mueller-Dombois, D., & Ellenberg, H. (1974). Aims and methods of vegetation ecology (547 p.). New York: Wiley.

    Google Scholar 

  • Nakane, K. (1994). Modelling the soil carbon cycle of pine ecosystems. Ecological Bulletins, 43, 161–172.

    CAS  Google Scholar 

  • Palmer, C. J., Smith, W. D., & Conkling, B. L. (2002). Development of a protocol for monitoring status and trends in forest soil carbon at a national level. Environmental Pollution, 116, S209–S219. doi:10.1016/S0269-7491(01)00253-6.

    Article  CAS  Google Scholar 

  • Palosuo, T., Liski, J., Trofymow, J. A., & Titus, B. D. (2005). Litter decomposition affected by climate and litter quality—testing the Yasso model with litterbag data from the Canadian intersite decomposition experiment. Ecological Modelling, 189, 183–198. doi:10.1016/j.ecolmodel.2005.03.006.

    Article  CAS  Google Scholar 

  • Peltoniemi, M. (2007). Country-scale carbon accounting of the vegetation and mineral soils of Finland. Dissertationes Forestales, 50, 46.

    Google Scholar 

  • Peltoniemi, M., Mäkipää, R., Liski, J., & Tamminen, P. (2004). Changes in soil carbon with stand age—an evaluation of a modelling method with empirical data. Global Change Biology, 10, 2078–2091. doi:10.1111/j.1365-2486.2004.00881.x.

    Article  Google Scholar 

  • Post, W., Emanuel, W. R., Zinke, P. J., & Stangenberger, A. G. (1982). Soil carbon pools and world life zones. Nature, 298, 156–159. doi:10.1038/298156a0.

    Article  CAS  Google Scholar 

  • R Foundation for Statistical Computing. (2006). R: A language and environment for statistical computing. Retrieved from http://www.R-project.org.

  • Ribeiro, P. J. J., & Diggle, P. J. (2001). geoR: A package for geostatistical analysis. R-NEWS, 1, 14–18 (http://CRAN.R-project.org/doc/Rnews/).

    Google Scholar 

  • SAS. (1999). The SAS system for Windows, version 8.01. SAS Institute, Cary, USA.

    Google Scholar 

  • Smith, P. (2004). How long before a change in soil organic carbon can be detected? Global Change Biology, 10, 1878–1883. doi:10.1111/j.1365-2486.2004.00854.x.

    Article  Google Scholar 

  • Ståhl, G., Boström, B., Lindkvist, H., Lindroth, A., Nilsson, J., & Olsson, M. (2004). Methodological options for quantifying changes in carbon pools in Swedish forests. Studia Forestalia Suecica, 214, 46.

    Google Scholar 

  • Tamminen, P., & Derome, J. (2005). Temporal trends in chemical parameters of upland forest soils in southern Finland. Silva Fennica, 39, 313–330.

    Google Scholar 

  • UNFCCC. (1992). United Nations framework convention on climate change. Retrieved from http://unfccc.int/resource/docs/convkp/conveng.pdf.

  • UNFCCC. (1998). Kyoto protocol to the United Nations framework convention on climate change. Retrieved from http://unfccc.int/resource/docs/convkp/kpeng.pdf.

  • UNFCCC. (2001). Matters relating to land use, land-use change and forestry. FCCC/CP/2001/L.11/Rev.1. Retrieved from http://unfccc.int/resource/docs/cop6secpart/crp03.pdf.

  • Webster, R., & Oliver, M. (2001). Geostatistics for environmental scientists (p. 286). New York: Wiley.

    Google Scholar 

  • Wilding, L. P., Drees, L. R., & Nordt, L. C. (2000). Spatial variability: Enhancing the mean estimate of organic and inorganic carbon in a sampling unit. In R. Lal et al. (Eds), Assessment methods for soil carbon (pp. 69–86). London: Lewis.

    Google Scholar 

  • Yoo, K., Amundson, R., Heimsath, A. M., & Dietrich, W. E. (2006). Spatial patterns of soil organic carbon on hillslopes: Integrating geomorphic processes and the biological C cycle. Geoderma, 130, 47–65. doi:10.1016/j.geoderma.2005.01.008.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petteri Muukkonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muukkonen, P., Häkkinen, M. & Mäkipää, R. Spatial variation in soil carbon in the organic layer of managed boreal forest soil—implications for sampling design. Environ Monit Assess 158, 67–76 (2009). https://doi.org/10.1007/s10661-008-0565-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0565-2

Keywords

Navigation