Environmental Monitoring and Assessment

, Volume 158, Issue 1–4, pp 67–76 | Cite as

Spatial variation in soil carbon in the organic layer of managed boreal forest soil—implications for sampling design

  • Petteri Muukkonen
  • Margareeta Häkkinen
  • Raisa Mäkipää


We studied within-site spatial variation of the carbon stock in the organic layer of boreal forest soil. A total of 1,006 soil samples were taken in ten forest stands (five Scots pine stands and five Norway spruce stands). Our results indicate that the spatial autocorrelation disappears at a distance of 75–225 cm. This spatial autocorrelation should be taken into account in the sampling design by locating the sampling points at adequate intervals. With a sample size of over 20–30 samples per site, additional soil samples do not notably improve the precision of the site mean estimate. An adequate sample size is dependent on the purpose of sampling and on the site-specific soil variation. Our results on the dependence between sample size and precision of the mean estimates can be applied in designing efficient soil monitoring in boreal coniferous forests.


Climate change Kriging Organic horizon Sampling design Soil sampling Variogram 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahti, T., Hämet-Ahti, L., & Jalas, J. (1968). Vegetation zones and their sections in northwestern Europe. Annales Botanici Fennici, 5, 169–211.Google Scholar
  2. Birdsey, R. (2004). Data gaps for monitoring forest carbon in the United States: An inventory perspective. Environmental Management, 33, S1–S8. doi:10.1007/s00267-003-9113-6.CrossRefGoogle Scholar
  3. Cajander, A. K. (1926). The theory of forest types. Acta Forestalia Fennica, 29, 108.Google Scholar
  4. Cajander, A. K. (1949). Forest types and their significance. Acta Forestalia Fennica, 56, 71.Google Scholar
  5. Callesen, I., Liski, J., Raulund-Rasmussen, K., Olsson, M. T., Tau-Strands, L., Vesterdal, L., et al. (2003). Soil carbon stores in Nordic well-drained forest soils—relationships with climate and texture class. Global Change Biology, 9, 358–370. doi:10.1046/j.1365-2486.2003.00587.x.CrossRefGoogle Scholar
  6. Conant, R. T., & Paustian, K. (2002). Spatial variability of soil organic carbon in grasslands: Implications for detecting change at different scales. Environmental Pollution, 116, S127–S135. doi:10.1016/S0269-7491(01)00265-2.CrossRefGoogle Scholar
  7. Conant, R. T., Smith, G. B., & Paustian, K. (2003). Spatial variability of soil carbon in forested and cultivated sites: Implications for change detection. Journal of Environmental Quality, 32, 278–286.CrossRefGoogle Scholar
  8. Conen, F., Yakutin, M. V., & Sambuu, A. D. (2003). Potential for detecting changes in soil organic carbon concentrations resulting from climate change. Global Change Biology, 9, 1515–1520. doi:10.1046/j.1365-2486.2003.00689.x.CrossRefGoogle Scholar
  9. Conen, F., Zerva, A., Arrouays, D., Jolivet, C., Jarvis, P. G., Grace, J., et al. (2004). The carbon balance of forest soils: Detectability of changes in soil carbon stocks in temperate and boreal forests. In H. Griffith & P. G. Jarvis (Eds), The carbon balance of forest biomes (pp. 233–247). Oxford: Garland Science/BIOS Scientific.Google Scholar
  10. Cressie, N. A. C. (1993). Statistics for spatial data (928 p.). New York: Wiley.Google Scholar
  11. Ellert, B. H., Janzen, H. H., & McConkey, B. G. (2000). Measuring and comparing soil carbon storage. In R. Lal, et al. (Eds), Assessment methods for soil carbon (pp. 131–146). London: Lewis.Google Scholar
  12. Finnish Forest Research Institute. (2007). Finnish statistical yearbook of forestry (436 p.). Vantaa: Finnish Forest Research Institute.Google Scholar
  13. Gaudinski, J. B., Trumbore, S. E., Davidson, E. A., & Zheng, S. (2000). Soil carbon cycling in a temperate forest: Radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry, 51, 33–69. doi:10.1023/A:1006301010014.CrossRefGoogle Scholar
  14. Gustavsen, H. G., Roiko-Jokela, P. & varmola, M. (1988). Kivennäismaiden talosumetsien pysyvät (Inka ja Tinka) kokeet. Finnish Forest Research Institute Research Papers, 292, 212.Google Scholar
  15. IPCC. (2003a). Good practice guidance for land use, land-use change and forestry (295 p.). Hayama, Japan: IPCC National Greenhouse Gas Inventories Programme.Google Scholar
  16. IPCC. (2003b). Report on good practice guidance for land use, land-use change and forestry. IPCC National Greenhouse Gas Inventories Programme. Retrieved from http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.htm.
  17. IPCC. (2006). Guidelines for national greenhouse gas inventories, agriculture, forestry and other land use (Vol. 4). IPCC National Greenhouse Gas Inventories Programme. Retrieved from http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.htm.
  18. Jian-Bing, W., Du-Ning, X., Xing-Yi, Z., Xiu-Zhen, L., & Xiao-Yu, L. (2006). Spatial variability of soil organic carbon in relation to environmental factors of a typical small watershed in the black soil region, Northeast China. Environmental Monitoring and Assessment, 121, 597–613. doi:10.1007/s10661-005-9158-5.CrossRefGoogle Scholar
  19. Liski, J. (1995). Variation in soil organic carbon and thickness of soil horizons within a boreal forest stand—effect of trees and implications for sampling. Silva Fennica, 29, 255–266.Google Scholar
  20. Liski, J. (1997). Carbon storage of forest soils in Finland (Vol. 16, p. 46). University of Helsinki, Department of Forest Ecology Publications.Google Scholar
  21. Liski, J., & Westman, C. J. (1995). Density of organic carbon in soil at coniferous forest sites in southern Finland. Biogeochemistry, 29, 183–197. doi:10.1007/BF02186047.CrossRefGoogle Scholar
  22. Mäkipää, R., Häkkinen, M., Peltoniemi, M. & Muukkonen, P. (2008a). Monitoring changes in the carbon stock of forest soils—costs of different sampling protocols. Boreal Environment Research (in press).Google Scholar
  23. Mäkipää, R., Lehtonen, A., & Peltoniemi, M. (2008b). Monitoring carbon stock changes in European forests using forest inventory data. In H. Dolman, et al. (Eds), The Continental-scale greenhouse gas balance of Europe (pp. 191–210). Berlin: Springer.CrossRefGoogle Scholar
  24. Mueller-Dombois, D., & Ellenberg, H. (1974). Aims and methods of vegetation ecology (547 p.). New York: Wiley.Google Scholar
  25. Nakane, K. (1994). Modelling the soil carbon cycle of pine ecosystems. Ecological Bulletins, 43, 161–172.Google Scholar
  26. Palmer, C. J., Smith, W. D., & Conkling, B. L. (2002). Development of a protocol for monitoring status and trends in forest soil carbon at a national level. Environmental Pollution, 116, S209–S219. doi:10.1016/S0269-7491(01)00253-6.CrossRefGoogle Scholar
  27. Palosuo, T., Liski, J., Trofymow, J. A., & Titus, B. D. (2005). Litter decomposition affected by climate and litter quality—testing the Yasso model with litterbag data from the Canadian intersite decomposition experiment. Ecological Modelling, 189, 183–198. doi:10.1016/j.ecolmodel.2005.03.006.CrossRefGoogle Scholar
  28. Peltoniemi, M. (2007). Country-scale carbon accounting of the vegetation and mineral soils of Finland. Dissertationes Forestales, 50, 46.Google Scholar
  29. Peltoniemi, M., Mäkipää, R., Liski, J., & Tamminen, P. (2004). Changes in soil carbon with stand age—an evaluation of a modelling method with empirical data. Global Change Biology, 10, 2078–2091. doi:10.1111/j.1365-2486.2004.00881.x.CrossRefGoogle Scholar
  30. Post, W., Emanuel, W. R., Zinke, P. J., & Stangenberger, A. G. (1982). Soil carbon pools and world life zones. Nature, 298, 156–159. doi:10.1038/298156a0.CrossRefGoogle Scholar
  31. R Foundation for Statistical Computing. (2006). R: A language and environment for statistical computing. Retrieved from http://www.R-project.org.
  32. Ribeiro, P. J. J., & Diggle, P. J. (2001). geoR: A package for geostatistical analysis. R-NEWS, 1, 14–18 (http://CRAN.R-project.org/doc/Rnews/).Google Scholar
  33. SAS. (1999). The SAS system for Windows, version 8.01. SAS Institute, Cary, USA.Google Scholar
  34. Smith, P. (2004). How long before a change in soil organic carbon can be detected? Global Change Biology, 10, 1878–1883. doi:10.1111/j.1365-2486.2004.00854.x.CrossRefGoogle Scholar
  35. Ståhl, G., Boström, B., Lindkvist, H., Lindroth, A., Nilsson, J., & Olsson, M. (2004). Methodological options for quantifying changes in carbon pools in Swedish forests. Studia Forestalia Suecica, 214, 46.Google Scholar
  36. Tamminen, P., & Derome, J. (2005). Temporal trends in chemical parameters of upland forest soils in southern Finland. Silva Fennica, 39, 313–330.Google Scholar
  37. UNFCCC. (1992). United Nations framework convention on climate change. Retrieved from http://unfccc.int/resource/docs/convkp/conveng.pdf.
  38. UNFCCC. (1998). Kyoto protocol to the United Nations framework convention on climate change. Retrieved from http://unfccc.int/resource/docs/convkp/kpeng.pdf.
  39. UNFCCC. (2001). Matters relating to land use, land-use change and forestry. FCCC/CP/2001/L.11/Rev.1. Retrieved from http://unfccc.int/resource/docs/cop6secpart/crp03.pdf.
  40. Webster, R., & Oliver, M. (2001). Geostatistics for environmental scientists (p. 286). New York: Wiley.Google Scholar
  41. Wilding, L. P., Drees, L. R., & Nordt, L. C. (2000). Spatial variability: Enhancing the mean estimate of organic and inorganic carbon in a sampling unit. In R. Lal et al. (Eds), Assessment methods for soil carbon (pp. 69–86). London: Lewis.Google Scholar
  42. Yoo, K., Amundson, R., Heimsath, A. M., & Dietrich, W. E. (2006). Spatial patterns of soil organic carbon on hillslopes: Integrating geomorphic processes and the biological C cycle. Geoderma, 130, 47–65. doi:10.1016/j.geoderma.2005.01.008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Petteri Muukkonen
    • 1
  • Margareeta Häkkinen
    • 1
  • Raisa Mäkipää
    • 1
  1. 1.Finnish Forest Research InstituteVantaaFinland

Personalised recommendations