Advertisement

Environmental Monitoring and Assessment

, Volume 157, Issue 1–4, pp 583–589 | Cite as

Urban activity and mercury contamination in estuarine and marine sediments (Southern Brazil)

  • Nicolai Mirlean
  • Lauro Calliari
  • Paulo Baisch
  • Ester Loitzenbauer
  • Evgueni Shumilin
Article

Abstract

The distribution of mercury in sediments of the Patos Lagoon estuary and nearby coastal marine deposits has been investigated for the period 1998–2008. Polluted urban soils and coastal reclamation fills are the principal sources of high mercury concentrations for shallow estuarine sediments. The shallow sediments that form near the urban area enter the navigation canal and are transported into the ocean. The mercury concentration in sediments of the navigation canal has considerably increased since 2004, due to intense reconstruction activity in the urban area. Periodic dredging of the canal strengthens the preconditions for coastal marine sediment contamination by mercury. However, this does not occur because the resuspended dredged sediments are significantly diluted by natural suspended particulate matter.

Keywords

Mercury Monitoring Estuarine sediments Navigation canal Coastal marine sediments Patos Lagoon (Brazil) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: A general review. Chemosphere, 40, 1335–1351. doi:10.1016/S0045-6535(99)00283-0.CrossRefGoogle Scholar
  2. Calliari, L. J., & Fachin, S. (1993). The Patos Lagoon. Influence on coastal mud deposits. Pesquisas UFRGS, 20, 57–69.Google Scholar
  3. Calliari, L. J., Holland, K. T., Pereira, P. S., Guedes, R. M. C., & Espírito Santo, R. (2007). The influence of mud on the inner shelf, shoreface, beach and surf-zone morphodynamics—Cassino, Southern Brazil. Proceedings of 7th Conference on Coastal Sediments, volume 2, pp. 1455–1465.Google Scholar
  4. Chester, R. (2003). Marine geochemistry (p. 506). London: Blackwell.Google Scholar
  5. CONAMA—Conselho Nacional do Meio Ambiente. (2004). Resolução No 344, Ministério do Meio Ambiente. Brasília, Brazil (in Portuguese).Google Scholar
  6. Cossa, D., & Gobeil, C. (2000). Mercury speciation in the lower St. Lawrence estuary. Canadian Journal of Fisheries and Aquatic Sciences, 57, 138–147. doi:10.1139/cjfas-57-S1-138.CrossRefGoogle Scholar
  7. Gerlach, S. A. (1981). Marine pollution: Diagnosis and therapy (p. 218). Berlin–Heidelberg: Springer.Google Scholar
  8. Kot, F. S., Green-Ruiz, C., Páez-Osuna, F., Shumilin, E., & Rodríguez-Meza, D. (1999). Distribution of mercury in sediments from La Paz Lagoon, Peninsula of Baja California, Mexico. Bulletin of Environmental Contamination and Toxicology, 63, 45–51. doi:10.1007/s001289900946.CrossRefGoogle Scholar
  9. Marques, W. C., Monteiro, I. O., Moraes, B. C., Flores, E. G., & Fernandes, E. H. L. (2007). Numerical model of the sediment plume from the Patos Lagoon, Brazil. Proceedings of VII Simposium on Waves, Seas and Engineering Oceanography (Vol. 1, pp. 345–346).Google Scholar
  10. Mirlean, N., & Oliveira, C. (2006). Mercury in coastal reclamation fills in southernmost Brazil: Historical and environmental facets. Journal of Coastal Research, 22, 1573–1576. doi:10.2112/04-0352.1.CrossRefGoogle Scholar
  11. Mirlean, N., Andrus, V. E., & Baisch, P. (2003). Mercury pollution sources in sediments of Patos Lagoon Estuary, Southern Brazil. Marine Pollution Bulletin, 46, 331–334. doi:10.1016/S0025-326X(02)00404-6.CrossRefGoogle Scholar
  12. Mirlean, N., Baraj, B., Niencheski, L. F., Baisch, P., & Robinson, D. (2001). The effect of accidental sulphuric acid leaking on metal distributions in estuarine sediment of Patos Lagoon. Marine Pollution Bulletin, 42, 1114–1117. doi:10.1016/S0025-326X(01)00099-6.CrossRefGoogle Scholar
  13. Mirlean, N., Cavalcanti, R., & Baisch, P. (1999). Mercury concentrations in the sediments of the Patos lagoon. Proceedings of the 3rd International Symposium on Environmental Geochemistry in Tropical Countries (Vol. 3, pp. 23–24).Google Scholar
  14. National Space Aeronautic Agency (NASA) (1984). Landsat 4 image orbit 2221, point 83.Google Scholar
  15. Polyakov, D. M., Virtsavs, M., Kozlova, S. I., Lovanov, A. A., Zadonskaya, T. A., & Shumilin, E. N. (1992). Mercury content in components of the ecosystem of the Gulf of Peter the Great. Vodnye-Resursy, 5, 484–490.Google Scholar
  16. Salomons, W., & Förstner, U. (1984). Metals in the hydrocycle (p. 485). Berlin, Heidelberg, New York: Springer.Google Scholar
  17. Shumilin, E. N., Anikiev, V. V., Goryachev, N. A., Kassatkina, A. P., & Fazlullin, S. M. (1993). Estimation of the role of biogeochemical barriers in trace metal migration in the river–sea system. Marine Chemistry, 43, 217–224. doi:10.1016/0304-4203(93)90227-F.CrossRefGoogle Scholar
  18. Strickland, J. D. H., & Parsons, T. R. (1968). A practical handbook of seawater analysis (2nd ed.). Ottawa: Fisheries Research Board of Canada, p. 311.Google Scholar
  19. USEPA. (1986). Test methods for evaluating solid waste, vol. IA (3rd ed.). Springfield, VA, USA: National Technical Information Service.Google Scholar
  20. Wang, Q., Kim, D., Dionysiou, D. D., Sorial, G. A., & Timberlake, D. (2004). Sources and remediation for mercury contamination in aquatic systems—a literature review. Environmental Pollution, 131, 323–336. doi:10.1016/j.envpol.2004.01.010.CrossRefGoogle Scholar
  21. Yuksek, A., Okus, E., Yilmaz, I. N., Yilmaz, A. A., & Tas, S. (2006). Changes in biodiversity of the extremely polluted Golden Horn Estuary following the improvements in water quality. Marine Pollution Bulletin, 52, 1209–1218. doi:10.1016/j.marpolbul.2006.02.006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Nicolai Mirlean
    • 1
  • Lauro Calliari
    • 1
  • Paulo Baisch
    • 1
  • Ester Loitzenbauer
    • 1
  • Evgueni Shumilin
    • 2
  1. 1.Laboratory of Marine Geology, Department of GeosciencesFundação Universidade do Rio GrandeRio GrandeBrazil
  2. 2.Centro Interdisciplinario de Ciencias MarinasAvenida IPN s/n, Col. Playa Palo de Santa RitaBaja Califórnia SurMexico

Personalised recommendations