Skip to main content

Advertisement

Log in

Contaminant concentrations in Asian carps, invasive species in the Mississippi and Illinois Rivers

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Populations of invasive fishes quickly reach extremely high biomass. Before control methods can be applied, however, an understanding of the contaminant loads of these invaders carry is needed. We investigated differences in concentrations of selected elements in two invasive carp species as a function of sampling site, fish species, length and trophic differences using stable isotopes (δ 15N, δ 13C). Fish were collected from three different sites, the Illinois River near Havana, Illinois, and two sites in the Mississippi River, upstream and downstream of the Illinois River confluence. Five bighead carp (Hypophthalmichthys nobilis) and five silver carp (Hypophthalmichthys molitrix) from each site were collected for muscle tissue analyses. Freshwater mussels (Amblema plicata) previously collected in the same areas were used as an isotopic baseline to standardize fish results among sites. Total fish length, trophic position, and corrected 13C, were significantly related to concentrations of metals in muscle. Fish length explained the most variation in metal concentrations, with most of that variation related to mercury levels. This result was not unexpected because larger fish are older, giving them a higher probability of exposure and accumulation of contaminants. There was a significant difference in stable isotope profiles between the two species. Bighead carp occupied a higher trophic position and had higher levels of corrected 13C than silver carp. Additionally bighead carp had significantly lower concentrations of arsenic and selenium than silver carp. Stable isotope ratios of nitrogen in Asian carp were at levels that are more commonly associated with higher-level predators, or from organisms in areas containing high loads of wastewater effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, C., & Cabana, G. (2006). Does δ 15N in river food webs reflect the intensity and origin of N loads from the watershed? The Science of the Total Environment, 367, 968–978. doi:10.1016/j.scitotenv.2006.01.029.

    Article  CAS  Google Scholar 

  • Besser, J. M., Giesy, J. P., Brown, R. W., Buell, J. M., & Dawson, G. A. (1996). Selenium bioaccumulation and hazards in a fish community affected by coal fly ash effluent. Ecotoxicology and Environmental Safety, 35, 7–15. doi:10.1006/eesa.1996.0076.

    Article  CAS  Google Scholar 

  • Bunn, S. E., Barton, D. R., Haynes, H. B. N., Power, G., & Pope, M. A. (1989). Stable isotope analysis of carbon flow in a tundra river system. Canadian Journal of Fisheries and Aquatic Sciences, 46, 1769–1775. doi:10.1139/f89-224.

    Article  CAS  Google Scholar 

  • Burger, J., Gaines, K. F., Boring, C. S., Stephens, J., Warren, L., Snodgrass, J., et al. (2001). Mercury and selenium in fish from the Savannah River: Species, trophic level, and locational differences. Environmental Research, 87, 108–118. doi:10.1006/enrs.2001.4294.

    Article  CAS  Google Scholar 

  • Chick, J. H., & Pegg, M. A. (2001). Invasive Carp in the Mississippi River Basin. Science, 292, 2251–2252. doi:10.1126/science.292.5525.2250.

    Article  Google Scholar 

  • Cole, M. L., Valiela, I., Kroeger, K. D., Tomasky, G. L., Cebrian, J., Wigand, C., et al. (2004). Assessment of a δ 15N isotopic method to indicate anthropogenic eutrophication in aquatic ecosystems. Journal of Environmental Quality, 33, 124–132.

    CAS  Google Scholar 

  • Cremer, M. C., & Smitherman, R. O. (1980). Food habits and growth of silver and bighead carp in cages and ponds. Aquaculture (Amsterdam, Netherlands), 20, 57–64. doi:10.1016/0044-8486(80)90061-7.

    Article  Google Scholar 

  • Dong, S., & Li, D. (1994). Comparative studies on the feeding selectivity of silver carp Hypophthalmichthys molitrix and bighead carp Aristichthys nobilis. Journal of Fish Biology, 44, 621–626. doi:10.1111/j.1095-8649.1994.tb01238.x.

    Article  Google Scholar 

  • Fitzpatrick, F. A., Scudder, B. C., Crawford, J. K., Sieverling, J. B., & Schmidt, A. R. (1995). Surface water-quality assessment of the upper Illinois River Basin in Illinois, Indiana, and Wisconsin–Major and trace elements in water, sediment, and biota, 1978 through 1990: U.S. Geological Survey Water-Resources Investigations Report 95-4045, (p. 254).

  • France, R. (1996). Ontogenic shift in crayfish δ 13C as a measure of land-water ecotonal coupling. Oecologia, 107, 239–242. doi:10.1007/BF00327908.

    Article  Google Scholar 

  • Fry, B. (2006). Stable isotope ecology (p. 308). NY: Springer Science + Business, Media LLC.

    Google Scholar 

  • Fry, B., Gace, A., & McClelland, J. W. (2003). Chemical Indicators of anthropogenic nitrogen-loading in four Pacific estuaries. Pacific Science, 57, 77–101. doi:10.1353/psc.2003.0004.

    Article  CAS  Google Scholar 

  • Groschen, G. E., Harris, M. A., King, R. B., Terrio, P. J., & Warner, K. L. (2000). Water quality in the lower Illinois River Basin, Illinois, 1995–98: U.S. Geological Survey Circular 1209, 36 p. http://pubs.water.usgs.gov/circ1209/. Accessed 29 October, 2007.

  • Gu, B. H., Schell, D. M., Huang, X. H., & Yie, F. L. (1996). Stable isotope evidence for dietary overlap between two planktivorous fishes in aquaculture ponds. Canadian Journal of Fisheries and Aquatic Sciences, 53, 2814–2818. doi:10.1139/cjfas-53-12-2814.

    Article  Google Scholar 

  • Hamilton, S. J. (2004). Review of selenium toxicity in the aquatic food chain. The Science of the Total Environment, 326, 1–31. doi:10.1016/j.scitotenv.2004.01.019.

    Article  CAS  Google Scholar 

  • Hecky, R. E., & Hesslein, R. H. (1995). Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society, 14, 631–653. doi:10.2307/1467546.

    Article  Google Scholar 

  • Herwig, B. R., Wahl, D. H., Dettmers, J. M., & Soluk, D. A. (2007). Spatial and temporal patterns in the food web structure of a large floodplain river assessed using stable isotopes. Canadian Journal of Fisheries and Aquatic Sciences, 64, 495–508. doi:10.1139/F07-023.

    Article  CAS  Google Scholar 

  • Hunter, R. G., Carroll, J. H., & Butler, J. S. (1981). The relationship of trophic level to arsenic burden in fish of a southern Great Plains lake. Journal of Freshwater Ecology, 1, 121–127.

    Google Scholar 

  • Jardine, T. D., Kidd, K. A., & Fisk, A. T. (2006). Applications, considerations, and sources of uncertainty when using stable isotope analysis in ecotoxicology. Environmental Science & Technology, 33, 108–121.

    Google Scholar 

  • Kamman, N. C., Burgess, N. M., Driscoll, C. T., Simonin, H. A., Goodale, W., Linehan, J., et al. (2005). Mercury in freshwater fish of Northeast North America—A geographic perspective based on fish tissue monitoring databases. Ecotoxicology (London, England), 14, 163–180. doi:10.1007/s10646-004-6267-9.

    CAS  Google Scholar 

  • Legendre, P., & Legendre, L. (1998). Numerical ecology. Amsterdam: Elsevier Science.

    Google Scholar 

  • Mason, R. P., Laporte, J.-M., & Andres, S. (2000). Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish. Archives of Environmental Contamination and Toxicology, 38, 283–297. doi:10.1007/s002449910038.

    Article  CAS  Google Scholar 

  • McClain, W., Chumchal, M., Drenner, R., & Newland, L. (2006). Mercury concentrations in fish from Lake Meredith, Texas: Implications for the issuance of fish consumption advisories. Environmental Monitoring and Assessment, 123, 249–258. doi:10.1007/s10661-006-9194-9.

    Article  CAS  Google Scholar 

  • McClelland, J. W., & Valiela, I. (1998). Linking nitrogen in estuarine producers to land derived sources. Limnology and Oceanography, 43, 577–585.

    CAS  Google Scholar 

  • McCutchan, J. H., Jr, Lewis, W. M., Jr, Kendall, C., & McGrath, C. C. (2003). Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos, 102, 378–390. doi:10.1034/j.1600-0706.2003.12098.x.

    Article  CAS  Google Scholar 

  • McIntyre, J. K., & Beauchamp, D. A. (2007). Age and trophic position dominate bioaccumulation of mercury and organochlorines in the food web of Lake Washington. The Science of the Total Environment, 372, 571–584. doi:10.1016/j.scitotenv.2006.10.035.

    Article  CAS  Google Scholar 

  • Nuevo, M., Sheehan, R. J., & Wills, P. S. (2004). Age and growth of the bighead carp Hypophthalmichthys nobilis (Richardson 1845) in the middle Mississippi River. Archiv fuer Hydrobiologie, 160, 215–230. doi:10.1127/0003-9136/2004/0160-0215.

    Article  Google Scholar 

  • Perga, M. E., & Gerdeaux, D. (2005). Are fish what they eat all year round? Oecologia, 144, 598–606. doi:10.1007/s00442-005-0069-5.

    Article  CAS  Google Scholar 

  • Pinnegar, J. K., & Polunin, N. V. C. (1999). Differential fractionation of 13C and 15N among fish tissues: Implications for the study of trophic interactions. Functional Ecology, 13, 225–231. doi:10.1046/j.1365-2435.1999.00301.x.

    Article  Google Scholar 

  • Post, D. M. (2002). Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology, 83, 703–718.

    Google Scholar 

  • Power, M., Klein, G. M., Guiguer, K. R. R. A., & Kwan, M. K. H. (2002). Mercury accumulation in the fish community of a sub-Arctic lake in relation to trophic position and carbon sources. Journal of Applied Ecology, 39, 819–830. doi:10.1046/j.1365-2664.2002.00758.x.

    Article  CAS  Google Scholar 

  • Radke, R. J., & Kahl, U. (2002). Effects of a filter-feeding fish [silver carp, Hypophthalmichthys molitrix (Val.)] on phyto- and zooplankton in a mesotrophic reservoir: Results from an enclosure experiment. Freshwater Biology, 47, 2337–2344. doi:10.1046/j.1365-2427.2002.00993.x.

    Article  Google Scholar 

  • Reinfelder, J. R., & Fisher, N. S. (1991). The assimilation of elements by marine copepods. Science, 251, 794–796. doi:10.1126/science.251.4995.794.

    Article  CAS  Google Scholar 

  • Rogowski, D., Soucek, D., Chick, J., Dettmers, J., Pegg, M., Johnson, S., et al. (2005). A preliminary ecotoxicological assessment of Asian carp species in the Mississippi and Illinois Rivers. Illinois Natural History Survey, Technical Report 05/05.

  • Ruus, A., Ugland, K. I., & Skaare, J. U. (2002). Influence of trophic position on organochlorine concentrations and compositional patterns in a marine food web. Environmental Toxicology and Chemistry, 21, 2356–2364. doi:10.1897/1551-5028(2002)021<2356:IOTPOO>2.0.CO;2.

    Article  CAS  Google Scholar 

  • Schlacher, T. A., Liddell, B., Gaston, T. F., & Schlacher-Hoenlinger, M. (2005). Fish track wastewater pollution to estuaries. Oecologia, 144, 570–584. doi:10.1007/s00442-005-0041-4.

    Article  Google Scholar 

  • Schmidt, A. R., & Blanchard, S. F.(1996). Surface-water-quality assessment of the upper Illinois River basin in Illinois, Indiana, and Wisconsin: Results of investigation through April 1992. United States Geological Survey, Water Resources Investigations Report 96-4223. http://il.water.usgs.gov/nawqa/uirb/pubs/reports/WRIR_96-4223/index.html. Accessed 21 January 2005.

  • Schmitt, C. J., & Brumbaugh, W. G. (1990). National Contaminant Biomonitoring Program: Concentrations of arsenic, cadmium, copper, lead, mercury, selenium, and zinc in freshwater fishes of the United States, 1976–1984. Archives of Environmental Contamination and Toxicology, 19, 731–747. doi:10.1007/BF01183991.

    Article  CAS  Google Scholar 

  • Schrank, S. J., Guy, C. S., & Fairchild, J. F. (2003). Competitive interactions between age-0 bighead carp and paddlefish. Transactions of the American Fisheries Society, 132, 1222–1228. doi:10.1577/T02-071.

    Article  Google Scholar 

  • Sotiropoulos, M. A., Tonn, W. M., & Wassenaar, L. I. (2004). Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: Potential consequences for food web studies. Ecology Freshwater Fish, 13, 155–160. doi:10.1111/j.1600-0633.2004.00056.x.

    Article  Google Scholar 

  • Sterner, R. W., & George, N. B. (2000). Carbon, nitrogen, and phosphorus stoichiometry of cyprinid fishes. Ecology, 81, 127–140.

    Article  Google Scholar 

  • Tanner, D. K., Brazner, J. C., & Brady, V. J. (2000). Factors influencing carbon, nitrogen, and phosphorus content of fish from a Lake Superior coastal wetland. Canadian Journal of Fisheries and Aquatic Sciences, 57, 1243–1251. doi:10.1139/cjfas-57-6-1243.

    Article  CAS  Google Scholar 

  • Vander Zanden, M. J., & Rasmussen, J. B. (2001). Variation in δ 15N and δ 13C trophic fractionation: Implications for aquatic food web studies. Limnology and Oceanography, 46, 2061–2066.

    Article  CAS  Google Scholar 

  • Williamson, C. J., & Garvey, J. E. (2005). Growth, fecundity, and diets of newly established silver carp in the middle Mississippi River. Transactions of the American Fisheries Society, 134, 1423–1430. doi:10.1577/T04-106.1.

    Article  Google Scholar 

  • Xu, Y., & Wang, W.-X. (2002). Exposure and potential food chain transfer factor of Cd, Se and Zn in marine fish Lutjanus argentimaculatus. Marine Ecology Progress Series, 238, 173–186. doi:10.3354/meps238173.

    Article  CAS  Google Scholar 

  • Xu, J., & Xie, P. (2004). Studies on the food web structure of Lake Donghu using stable carbon and nitrogen isotope ratios. Journal of Freshwater Ecology, 19, 645–650.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Rogowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogowski, D.L., Soucek, D.J., Levengood, J.M. et al. Contaminant concentrations in Asian carps, invasive species in the Mississippi and Illinois Rivers. Environ Monit Assess 157, 211–222 (2009). https://doi.org/10.1007/s10661-008-0529-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0529-6

Keywords

Navigation