Environmental Monitoring and Assessment

, Volume 157, Issue 1–4, pp 113–124 | Cite as

Linking multimetric and multivariate approaches to assess the ecological condition of streams

  • Kevin J. Collier


Few attempts have been made to combine multimetric and multivariate analyses for bioassessment despite recognition that an integrated method could yield powerful tools for bioassessment. An approach is described that integrates eight macroinvertebrate community metrics into a Principal Components Analysis to develop a Multivariate Condition Score (MCS) from a calibration dataset of 511 samples. The MCS is compared to an Index of Biotic Integrity (IBI) derived using the same metrics based on the ratio to the reference site mean. Both approaches were highly correlated although the MCS appeared to offer greater potential for discriminating a wider range of impaired conditions. Both the MCS and IBI displayed low temporal variability within reference sites, and were able to distinguish between reference conditions and low levels of catchment modification and local habitat degradation, although neither discriminated among three levels of low impact. Pseudosamples developed to test the response of the metric aggregation approaches to organic enrichment, urban, mining, pastoral and logging stressor scenarios ranked pressures in the same order, but the MCS provided a lower score for the urban scenario and a higher score for the pastoral scenario. The MCS was calculated for an independent test dataset of urban and reference sites, and yielded similar results to the IBI. Although both methods performed comparably, the MCS approach may have some advantages because it removes the subjectivity of assigning thresholds for scoring biological condition, and it appears to discriminate a wider range of degraded conditions.


Macroinvertebrate Bioassessment Biomonitoring Ordination New Zealand 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angradi, T. R. (1999). Fine sediment and macroinvertebrate assemblages in Appalacian streams: A field experiment with biomonitoring applications. Journal of the North American Benthological Society, 18, 49–66. doi:10.2307/1468008.CrossRefGoogle Scholar
  2. Barbour, M. T., Plafkin, J. L., Bradley, B. P., Graves, C. G., & Wissmar, R. W. (1992). Evaluation of EPA’s rapid bioassessment benthic metrics: Metric redundancy and variability among reference stream sites. Environmental Toxicology and Chemistry, 11, 437–449. doi:10.1897/1552-8618(1992)11[437:EOERBB]2.0.CO;2.CrossRefGoogle Scholar
  3. Bowman, M. F., & Somers, K. M. (2006). Evaluating a novel test site analysis (TSA) bioassessment approach. Journal of the North American Benthological Society, 25, 712–727. doi:10.1899/0887-3593(2006)25[712:EANTSA]2.0.CO;2.CrossRefGoogle Scholar
  4. Bressler, D. W., Stribling, J. B., Paul, M. J., & Hicks, M. B. (2006). Stressor tolerance values for benthic macroinvertebrates in Mississippi. Hydrobiologia, 573, 155–172. doi:10.1007/s10750-006-0266-1.CrossRefGoogle Scholar
  5. Christensen, M. R., Graham, M. D., Vinebrooke, R. D., Findlay, D. L., Paterson, M. J., & Turner, M. A. (2006). Multiple anthropogenic stressors cause ecological surprises in boreal lakes. Global Change Biology, 12, 2316–2322. doi:10.1111/j.1365-2486.2006.01257.x.CrossRefGoogle Scholar
  6. Collier, K. J. (1995). Environmental factors affecting the taxonomic composition of aquatic macroinvertebrate communities in lowland waterways of Northland, New Zealand. New Zealand Journal of Marine and Freshwater Research, 29, 453–465.Google Scholar
  7. Collier, K. J., Haigh, A., & Kelly, J. (2007). Coupling GIS and multivariate approaches to select reference sites for wadeable stream monitoring. Environmental Monitoring and Assessment, 127, 29–45. doi:10.1007/s10661-006-9256-z.CrossRefGoogle Scholar
  8. Collier, K. J., & Halliday, J. N. (2000). Macroinvertebrate-wood associations during decay of plantation pine in New Zealand pumice-bed streams: Stable habitat or trophic subsidy? Journal of the North American Benthological Society, 19, 94–111. doi:10.2307/1468284.CrossRefGoogle Scholar
  9. Collier, K. J., & Kelly, J. (2005). Regional guidelines for ecological assessments of freshwater environments: Macroinvertebrate sampling in wadeable streams. Hamilton: Environment Waikato Technical Report TR05/02, Environment Waikato. Retrieved from
  10. Collier, K. J., & Smith, B. J. (2005). Effects of progressive catchment harvesting on stream invertebrates in two contrasting regions of New Zealand’s North Island. Marine & Freshwater Research, 56, 57–68. doi:10.1071/MF04105.CrossRefGoogle Scholar
  11. Collier, K. J., Wilcock, R. J., & Meredith, A. S. (1998). Influence of substrate type and physicochemical conditions and macroinvertebrate faunas on biotic metrics of some lowland Waikato streams. New Zealand Journal of Marine and Freshwater Research, 32, 1–19.CrossRefGoogle Scholar
  12. Conover, W. J., & Iman, R. L. (1981). Rank transformations as a bridge between parametric and non-parametric statistics. The American Statistician, 35, 124–133. doi:10.2307/2683975.CrossRefGoogle Scholar
  13. Coysh, J., Nichols, S., Ransom, G., Simpson, G., Norris, R., Barmuta, L., et al. (2000). AUSRIVAS macroinvertebrate bioassessment predictive modelling manual. Canberra: Cooperative Research Centre for Freshwater Ecology.Google Scholar
  14. Davies, S. P., & Tsomides, L. (2002). Methods for biological sampling and analysis of Maine’s rivers and streams. Maine: Maine Department of Environmental Protection, Bureau of Land and Water Quality, Division of Environmental Assessment, January 1997, revised August 2002.Google Scholar
  15. Gabriels, W., Goethals, P. L. M., & De Pauw, N. (2005). Implications of taxonomic modifications and alien species on biological water quality assessment as exemplified by the Belgian Biotic Index method. Hydrobiologia, 542, 137–150. doi:10.1007/s10750-004-1452-7.CrossRefGoogle Scholar
  16. Gerritsen, J. (1995). Additive biological indices for resource management. Journal of the North American Benthological Society, 14, 451–457. doi:10.2307/1467211 .CrossRefGoogle Scholar
  17. Griffith, M. B., Hill, B. H., McCormick, F. H., Kaufman, P. R., Herlihy, A. T., & Selle, A. R. (2005). Comparative application of indices of biotic integrity based on periphyton, macroinvertebrates, and fish to Rocky Mountain streams. Ecological Indicators, 5, 117–136. doi:10.1016/j.ecolind.2004.11.001.CrossRefGoogle Scholar
  18. Hagen, E. M., Webster, J. R., & Benfield, E. F. (2006). Are leaf breakdown rates a useful measure of stream integrity along an agricultural landuse gradient? Journal of the North American Benthological Society, 25, 330–343. doi:10.1899/0887-3593(2006)25[330:ALBRAU]2.0.CO;2.CrossRefGoogle Scholar
  19. Harding, J. S., Quinn, J. M., & Hickey, C. W. (2000). Effects of mining and urbanisation. In K. J. Collier & M. J. Winterbourn (Eds.), New Zealand stream invertebrates. Ecology and implications for management (pp. 230–259). Christchurch: New Zealand Limnological Society.Google Scholar
  20. Hawkins, C. P. (2006). Quantifying biological integrity by taxonomic completeness: Its utility in regional and global assessments. Ecological Applications, 16, 1277–1294. doi:10.1890/1051-0761(2006)016[1277:QBIBTC]2.0.CO;2.CrossRefGoogle Scholar
  21. Herbst, D. B., & Silldorf, E. L. (2006). Comparison of the performance of different bioassessment methods: Similar evaluations of biotic integrity from separate programs and procedures. Journal of the North American Benthological Society, 25, 513–530. doi:10.1899/0887-3593(2006)25[513:COTPOD]2.0.CO;2.CrossRefGoogle Scholar
  22. Hering, D., Johnson, R. K., Kramm, S., Schmutz, S., Szoszkiewicz, K., & Verdonschot, P. F. M. (2006). Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: A comparative metric-based analysis of organisms response to stress. Freshwater Biology, 51, 1757–1785. doi:10.1111/j.1365-2427.2006.01610.x.CrossRefGoogle Scholar
  23. Hickey, C. W., & Clements, W. H. (1998). Effects of heavy metals on benthic macroinvertebrate communities in New Zealand streams. Environmental Toxicology and Chemistry, 17, 2338–2346. doi:10.1897/1551-5028(1998)017<2338:EOHMOB>2.3.CO;2.CrossRefGoogle Scholar
  24. Hickey, C. W., & Golding, L. A. (2002). Response of macroinvertebrates to copper and zinc in a stream mesocosm. Environmental Toxicology and Chemistry, 21, 1854–1863. doi:10.1897/1551-5028(2002)021<1854:ROMTCA>2.0.CO;2.CrossRefGoogle Scholar
  25. Hilsenhoff, W. L. (1987). An improved index of organic stream pollution. Great Lakes Entomologist, 20, 31–39.Google Scholar
  26. James, F. C., & McCulloch, C. E. (1990). Multivariate analysis in ecology and systematics: Panacea or Pandora’s Box? Annual Review of Ecology and Systematics, 21, 129–166.Google Scholar
  27. Joy, M. K., & Death, R. G. (2004). Application of the index of biotic integrity methodology to New Zealand freshwater fish communities. Environmental Management, 34, 415–428. doi:10.1007/s00267-004-0083-0.CrossRefGoogle Scholar
  28. Karr, J. R. (1999). Defining river health. Freshwater Biology, 41, 221–234. doi:10.1046/j.1365-2427.1999.00427.x.CrossRefGoogle Scholar
  29. Lenat, D. R. (1984). Agriculture and stream water quality: A biological evaluation of erosion control processes. Environmental Management, 8, 333–344. doi:10.1007/BF01868032.CrossRefGoogle Scholar
  30. Linke, S., Norris, R. H., Faith, D. P., & Stockwell, D. (2005). ANNA: A new prediction method for bioassessment programs. Freshwater Biology, 50, 147–158. doi:10.1111/j.1365-2427.2004.01286.x.CrossRefGoogle Scholar
  31. Maxted, J. R., Barbour, M. T., Gerritsen, J., Poretti, V., Primrose, N., Silvia, A., et al. (2000). Assessment framework for mid-Atlantic coastal plain streams using benthic macroinvertebrates. Journal of the North American Benthological Society, 19, 128–144. doi:10.2307/1468286.CrossRefGoogle Scholar
  32. Maxted, J. R., Evans, B. F., & Scarsbrook, M. R. (2003). Development of standard protocols for macroinvertebrate assessment of soft-bottomed streams in New Zealand. New Zealand Journal of Marine and Freshwater Research, 37, 793–807.Google Scholar
  33. Mazor, R. D., Reynoldson, T. B., Rosenberg, D. M., & Resh, V. H. (2006). Effects of biotic assemblage, classification, and assessment method on bioassessment performance. Canadian Journal of Fisheries and Aquatic Sciences, 63, 394–411. doi:10.1139/f05-222.CrossRefGoogle Scholar
  34. McCune, B., & Grace, J. B. (2002). Analysis of ecological communities. Gleneden Beach: MjM Software Design.Google Scholar
  35. Miltner, R. J., & Rankin, E. T. (1998). Primary issues and the biotic integrity of rivers and streams. Freshwater Biology, 40, 145–158. doi:10.1046/j.1365-2427.1998.00324.x.CrossRefGoogle Scholar
  36. Niyogi, D. K., Koren, M., Arbuckle, C. J., & Townsend, C. R. (2007). Stream communities along a catchment land-use gradient: Subsidy-stress responses to pastoral development. Environmental Management, 39, 213–225. doi:10.1007/s00267-005-0310-3.CrossRefGoogle Scholar
  37. Norris, R. H. (1995). Biological monitoring: The dilemma of data analysis. Journal of the North American Benthological Society, 14, 440–450. doi:10.2307/1467210.CrossRefGoogle Scholar
  38. Norris, R. H., & Hawkins, C. P. (2000). Monitoring river health. Hydrobiologia, 435, 5–17. doi:10.1023/A:1004176507184.CrossRefGoogle Scholar
  39. Palmer, M. A., Bernhardt, E. S., Allan, J. D., Lake, P. S., Alexander, G., Brooks, S., et al. (2005). Standards for ecologically successful river restoration. Journal of Applied Ecology, 42, 208–217. doi:10.1111/j.1365-2664.2005.01004.x.CrossRefGoogle Scholar
  40. Plafkin, J. L., Barbour, M. T., Porter, K. D., Gross, S. K., & Hughes, R. M. (1989). Rapid bioassessment protocols for use in streams and rivers: Benthic invertebrates and fish. Washington DC: US Environmental Protection Agency, Office of Water Regulations and Standards.Google Scholar
  41. Quinn, J. M., Boothroyd, I. K. G., & Smith, B. J. (2004). Riparian buffers mitigate effects of pine plantation logging on New Zealand streams 2. Invertebrate communities. Forest Ecology and Management, 191, 129–146. doi:10.1016/j.foreco.2003.11.013.CrossRefGoogle Scholar
  42. Rabeni, C. F. (2000). Evaluating physical habitat integrity in relation to the biological potential of streams. Hydrobiologia, 422/423, 245–256. doi:10.1023/A:1017022300825.CrossRefGoogle Scholar
  43. Reynoldson, T. B., Bailey, R. C., Day, K. E., & Norris, R. H. (1995). Biological guidelines for freshwater sediment based on BEnthic Assessment of SedimenT (the BEAST) using a multivariate approach for predicting biological state. Australian Journal of Ecology, 20, 198–219. doi:10.1111/j.1442-9993.1995.tb00532.x.CrossRefGoogle Scholar
  44. Reynoldson, T. B., Norris, R. H., Resh, V. H., Day, K. E., & Rosenberg, D. M. (1997). The reference condition: A comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. Journal of the North American Benthological Society, 16, 833–852. doi:10.2307/1468175.CrossRefGoogle Scholar
  45. Rois, S. L., & Bailey, R. C. (2006). Relationship between riparian vegetation and stream benthic communities at three spatial scales. Hydrobiologia, 553, 153–160. doi:10.1007/s10750-005-0868-z.CrossRefGoogle Scholar
  46. Roy, A. H., Rosemond, A. D., Leigh, D. S., Paul, M. J., & Wallace, J. B. (2003). Habitat-specific responses of stream insects to landcover disturbance: Biological consequences and monitoring implications. Journal of the North American Benthological Society, 22, 292–307. doi:10.2307/1467999.CrossRefGoogle Scholar
  47. Sponseller, R. A., Benfield, E. F., & Valett, H. M. (2001). Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshwater Biology, 46, 1409–1424. doi:10.1046/j.1365-2427.2001.00758.x2427.2001.00758.x.CrossRefGoogle Scholar
  48. Stark, J. D. (1985). A macroinvertebrate community index of water quality for stony streams. Water & Soil Miscellaneous Publication 87. Wellington: Ministry of Works and Development.Google Scholar
  49. Stark, J. D., Boothroyd, I. K. G., Harding, J. S., Maxted, J. R., & Scarsbrook, M. R. (2001). Protocols for sampling macroinvertebrates in wadeable streams. Wellington: New Zealand Macroinvertebrate Working Group Report No. 1, Ministry for the Environment.Google Scholar
  50. Stribling, J. B., Jessup, B. K., & Feldman, D. L. (2008). Precision of benthic macroinvertebrate indicators of stream condition in Montana. Journal of the North American Benthological Society, 27, 58–67. doi:10.1899/07-037R.1.CrossRefGoogle Scholar
  51. Suter, G. W., II (1993). A critique of ecosystem health concepts and indexes. Environmental Toxicology and Chemistry, 12, 1533–1539. doi:10.1897/1552-8618(1993)12[1533:ACOEHC]2.0.CO;2.CrossRefGoogle Scholar
  52. van Sickle, J., Hawkins, C. P., Larsen, D. P., & Herlihy, A. T. (2005). A null model for the expected macroinvertebrate assemblage in streams. Journal of the North American Benthological Society, 24, 178–191. doi:10.1899/0887-3593(2005)024<0178:ANMFTE>2.0.CO;2.CrossRefGoogle Scholar
  53. Vaughan, I. P., & Ormerod, S. J. (2005). Increasing the value of principal component analysis for simplifying ecological data: A case study with rivers and riverine birds. Journal of Applied Ecology, 42, 487–497. doi:10.1111/j.1365-2664.2005.01038.x.CrossRefGoogle Scholar
  54. Vlek, H. E., Verdonschot, F. M., & Nijboer, R. C. (2004). Towards a multimetric index for the assessment of Dutch streams using benthic macroinvertebrates. Hydrobiologia, 516, 173–189. doi:10.1023/B:HYDR.0000025265.36836.e1.CrossRefGoogle Scholar
  55. Walsh, C. J. (2004). Protection of instream biota from urban impacts: minimise catchment imperviousness to improve drainage design. Marine & Freshwater Research, 55, 317–326. doi:10.1071/MF03206.Google Scholar
  56. Walsh, C. J. (2006). Biological indicators of stream health using macroinvertebrate assemblage composition: A comparison of sensitivity to an urban gradient. Marine & Freshwater Research, 57, 37–47. doi:10.1071/MF05041.CrossRefGoogle Scholar
  57. Walsh, C. J., Waller, K. A., Gehling, J., & MacNally, R. (2007). Riverine invertebrate assemblages are degraded more by catchment urbanization that by riparian deforestation. Freshwater Biology, 52, 574–587. doi:10.1111/j.1365-2427.2006.01706.x.CrossRefGoogle Scholar
  58. Weigel, B. M. (2003). Development of stream macroinvertebrate models that predict watershed and local stressors in Wisconsin. Journal of the North American Benthological Society, 22, 123–142. doi:10.2307/1467982.CrossRefGoogle Scholar
  59. Wright, J. F., Moss, D., Armitage, P. D., & Furse, M. T. (1984). A preliminary classification of running water-sites in Great Britain based on macro-invertebrate species and the prediction of community type using environmental data. Freshwater Biology, 14, 221–256. doi:10.1111/j.1365-2427.1984.tb00039.x.CrossRefGoogle Scholar
  60. Yuan, L. L., & Norton, S. B. (2003). Comparing responses of macroinvertebrate metrics to increasing stress. Journal of the North American Benthological Society, 22, 308–322. doi:10.2307/1468000.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Environment WaikatoHamilton EastNew Zealand
  2. 2.Centre for Biodiversity and Ecology ResearchThe University of WaikatoHamiltonNew Zealand

Personalised recommendations