Environmental Monitoring and Assessment

, Volume 156, Issue 1–4, pp 377–390 | Cite as

Air quality of Prague: traffic as a main pollution source



Political and economical transition in the Central and Eastern Europe at the end of eighties significantly influenced all aspects of life as well as technological infrastructure. Collapse of outdated energy demanding industry and adoption of environmental legislation resulted in seeming improvements of urban environmental quality. Hand in hand with modernization the newly adopted regulations also helped to phase out low quality coal frequently used for domestic heating. However, at the same time, the number of vehicles registered in the city increased. The two processes interestingly acted as parallel but antagonistic forces. To interpret the trends in urban air quality of Prague, Czech capital, monthly averages of PM10, SO2, NO2, NO, O3 and CO concentrations from the national network of automated monitoring stations were analyzed together with long term trends in fuel consumption and number of vehicles registered in Prague within a period of 1992–2005. The results showed that concentrations of SO2 (a pollutant strongly related to fossil fuel burning) dropped significantly during the period of concern. Similarly NOX and PM10 concentrations decreased significantly in the first half of the nineties (as a result of solid fuel use drop), but remained rather stable or increased after 2000, presumably reflecting rapid increase of traffic density. In conclusion, infrastructural changes in early nineties had a strong positive effect on Prague air quality namely in the first half of the period studied, nevertheless, the current trend in concentrations of automotive exhaust related pollutants (such as PM10, NOX) needs adoption of stricter measures.


Urban air Atmospheric pollution Sulphur dioxide Carbon monoxide Nitrogen dioxide Tropospheric ozone Particulate matter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberti, M. (2005). The effects of urban patterns on ecosystem function. International Regional Science Review, 28(2), 168–192. doi:10.1177/0160017605275160.CrossRefGoogle Scholar
  2. Anonymous (2006). Car free day 2006. Nearly one car per two inhabitants in the EU25 in 2004. EUROSTAT News Release 125 2006. Retrieved October 2007 from http://epp.eurostat.cec.eu.int.
  3. Baldasano, J. M., Valera, E., & Jiménez, P. (2003). Air quality data from large cities. The Science of the Total Environment, 307, 141–145. doi:10.1016/S0048-9697(02)00537-5.CrossRefGoogle Scholar
  4. Beewers, S. D., & Carslaw, D. C. (2005). The impact of congestion charging on vehicle emission in London. Atmospheric Environment, 39, 1–5. doi:10.1016/j.atmosenv.2004.10.001.CrossRefGoogle Scholar
  5. Bell, M. L., & Davis, D. L. (2001). Reassessment of the lethal London fog of 1952: Novel indicators of acute and chronic consequences of acute exposure to air pollution. Environmental Health Perspectives, 109(Suppl. 3), 389–394. doi:10.2307/3434786.CrossRefGoogle Scholar
  6. Berico, M., Luciani, A., & Formignani, M. (1997). Atmospheric aerosol in an urban area—measurements of TSP and PM10 standards and pulmonary deposition assessment. Atmospheric Environment, 31, 3659–3665. doi:10.1016/S1352-2310(97)00204-5.CrossRefGoogle Scholar
  7. Bityukova, L. (2006). Air pollution effect on the decay of carbonate building stones in old town of Tallinn. Water Air and Soil Pollution, 172(1–4), 239–271.CrossRefGoogle Scholar
  8. Bobak, M., & Leon, D. A. (1992). Air pollution and infant mortality in the Czech Republic. Lancet, 340, 1010–1014. doi:10.1016/0140-6736(92)93017-H.CrossRefGoogle Scholar
  9. Branis, M. (1996). Environment in the Czech Republic: State of the art and recent development under economic and political transition. Geografie—Proceedings of the Czech Geographical Society, 101(2), 169–179.Google Scholar
  10. Branis, M. (2003). Particulate emission inventory and trends in ambient particulate matter concentrations in the Czech Republic between 1993 and 1999. Environmental Monitoring and Assessment, 87, 123–132. doi:10.1023/A:1024694630991.CrossRefGoogle Scholar
  11. Cifuentes, L., Borja-Aburto, V. H., Gouveia, N., Thurston, G., & Davis, D. L. (2001). Assessing health benefits of urban air pollution reductions associated with climate change mitigation (2000–2020): Santiago, Sao Paulo, Mexico City, and New York City. Environmental Health Perspectives, 109(Suppl. 3), 419–425. doi:10.2307/3434790.CrossRefGoogle Scholar
  12. Ciocco, A., & Thompson, D. J. (1961). A follow-up on Donora ten years after: Methodology and findings. American Journal of Public Health, 51, 155–164.CrossRefGoogle Scholar
  13. Darlington, T. L., Kahlbaum, D. F., Heus, J. M., & Wolff, G. T. (1997). Analysis of PM10 trends in the United States from 1988 through 1995. Journal of the Air & Waste Management Association, 47, 1070–1078.Google Scholar
  14. De Leeuw, F. A. A., Moussiopoulos, N., Sahm, P., & Bartonova, A. (2001). Urban air quality in larger conurbations in the European Union. Environmental Modelling & Software, 16, 399–414. doi:10.1016/S1364-8152(01)00007-X.CrossRefGoogle Scholar
  15. Del Monte, M., Ausset, P., Lefèvre, R. A., & Thiébault, S. (2001). Evidence of pre-industrial air pollution from the Heads of the Kings of Juda statues from Notre Dame Cathedral in Paris. The Science of the Total Environment, 273(1–3), 101–109. doi:10.1016/S0048-9697(00)00847-0.Google Scholar
  16. Ebelt, S., Brauer, M., Cyrys, J., Wichmann, H. -E., & Heinrich, J. (2001). Air quality in postunification Erfurt, East Germany: Associating changes in pollutant concentration with changes in emissions. Environmental Health Perspectives, 109(4), 325–333. doi:10.2307/3454890.CrossRefGoogle Scholar
  17. Economopoulou, A. A., & Economopoulos, A. P. (2002). Air pollution in Athens basin and health risk assessment. Environmental Monitoring and Assessment, 80(3), 277–299. doi:10.1023/A:1021124404645.CrossRefGoogle Scholar
  18. EEA (2003). Europe’s environment the third assessment (Environmental assessment report No 10) (p. 343). Copenhagen, Denmark: European Environment Agency.Google Scholar
  19. Fenger, J. (1999). Urban air quality. Atmospheric Environment, 33, 4877–4900. doi:10.1016/S1352-2310(99)00290-3.CrossRefGoogle Scholar
  20. Fernández Jimenéz, M. T., Climent-Font, A., & Antón, J. L. S. (2003). Long term atmospheric pollution study at Madrid city (Spain). Water, Air, and Soil Pollution, 142, 243–260. doi:10.1023/A:1022011909134.CrossRefGoogle Scholar
  21. Galea, S., Rudenstine, S., & Vlahov, D. (2005). Drug use, misuse, and the urban environment. Drug and Alcohol Review, 24(2), 127–136. doi:10.1080/09595230500102509.CrossRefGoogle Scholar
  22. Haagen-Smit, A. J. (1952). Chemistry and physiology of Los-Angeles smog. Industrial & Engineering Chemistry, 44(6), 1342–1346. doi:10.1021/ie50510a045.CrossRefGoogle Scholar
  23. Hunova, I. (2001). Spatial interpretation of ambient air quality data for the territory of the Czech Republic. Environmental Pollution, 112, 107–119. doi:10.1016/S0269-7491(00)00126-3.CrossRefGoogle Scholar
  24. Itano, Y., Bandow, H., Takenaka, N., Saitoh, Y., Asayama, A., & Fukuyama, J. (2007). Impact of NOx reduction on long-term ozone trends in an urban atmosphere. The Science of the Total Environment, 379(1), 46–55. doi:10.1016/j.scitotenv.2007.01.079.CrossRefGoogle Scholar
  25. Jelinkova, J., & Branis, M. (2001). Mortality during winter smog episodes 1982, 1895, 1987 and 1993 in the Czech Republic. International Archives of Occupational and Environmental Health, 74, 565–573.Google Scholar
  26. Jonson, J. E., Simpson, D., Fagerli, H., & Solberg, S. (2006). Can we explain the trends in European ozone levels? Atmospheric Chemistry and Physics, 6, 51–66.CrossRefGoogle Scholar
  27. Keywood, M. D., Ayers, G. P., Gras, J. L., Gillett, R. W., & Cohen, D. D. (1999). Relationships between size segregated mass concentration data and ultrafine particle number concentration in urban areas. Atmospheric Environment, 33, 2907–2913. doi:10.1016/S1352-2310(99)00102-8.CrossRefGoogle Scholar
  28. Kimmel, V., Tammet, H., & Truuts, T. (2002). Variation of atmospheric air pollution under conditions of rapid economic change—Estonia 1994–1999. Atmospheric Environment, 36, 4133–4144. doi:10.1016/S1352-2310(02)00281-9.CrossRefGoogle Scholar
  29. Kuebler, J., van der Bergh, H., & Russel, A. G. (2001). Long term trends of primary and secondary pollutant concentrations in Switzerland and their response to emission controls and economic changes. Atmospheric Environment, 35, 1351–1363. doi:10.1016/S1352-2310(00)00401-5.CrossRefGoogle Scholar
  30. Laden, F., Neas, L. M., Dockery, D. W., & Schwartz, J. (2000). Association of fine particulate matter from different sources with daily mortality in six US cities. Environmental Health Perspectives, 108(10), 941–947. doi:10.2307/3435052.CrossRefGoogle Scholar
  31. Logan, W. P. D. (1953). Mortality in the London fog incident. Lancet, 261(6755), 336–338. doi:10.1016/S0140-6736(53)91012-5.CrossRefGoogle Scholar
  32. Mage, D., Ozolins, G., Peterson, P., Webster, A., Orthofer, R., Vanderweerd, V., et al. (1996). Urban air pollution in megacities in the world. Atmospheric Environment, 30, 681–686. doi:10.1016/1352-2310(95)00219-7.CrossRefGoogle Scholar
  33. Mayer, H. (1999). Air pollution in cities. Atmospheric Environment, 33, 4029–4037. doi:10.1016/S1352-2310(99)00144-2.CrossRefGoogle Scholar
  34. Moldan, B., & Hak, T. (2007). Environment in the Czech Republic: A positive and rapid change. Environmental Science & Technology, 41(2), 358–362.CrossRefGoogle Scholar
  35. Moldan, B., & Schnoor, J. L. (1992). Czechoslovakia examining critically ill environment. Environmental Science & Technology, 26(1), 14–21. doi:10.1021/es00025a001.CrossRefGoogle Scholar
  36. Molina, M. J., & Molina, L. T. (2004). Megacities and atmospheric pollution. Journal of the Air & Waste Management Association, 54, 644–680.Google Scholar
  37. Mutatkar, R. K. (1995). Public-health problems of urbanization. Social Science & Medicine, 41(7), 977–981. doi:10.1016/0277-9536(94)00398-D.CrossRefGoogle Scholar
  38. Parrish, D. D., Trainer, M., Hereid, D., Williams, E. J., Olszyna, K. J., Harley, R. A., et al. (2002). Decadal change in carbon monoxide to nitrogen oxide ratio in US vehicular emissions. Journal of Geophysical Research, 107(D12), ACH5-1-5-9.CrossRefGoogle Scholar
  39. Pope, C. A. III, & Dockery, D. W. (2006). Health effects of fine particulate air pollution: Lines that connect. Journal of the Air & Waste Management Association, 56, 709–742.Google Scholar
  40. Reponen, A., Ruuskanen, J., Mirme, A., Parjala, E., Hoek, G., Roemer, W., et al. (1996). Comparison of five methods for measuring particulate matter concentrations in cold winter climate. Atmospheric Environment, 30(22), 3873–3879. doi:10.1016/1352-2310(96)00073-8.CrossRefGoogle Scholar
  41. Shahgedanova, M., Burt, T. P., & Davies, T. D. (1999). Carbon monoxide and nitrogen oxides pollution in Moscow. Water, Air, and Soil Pollution, 112, 107–131. doi:10.1023/A:1005043916123.CrossRefGoogle Scholar
  42. Sjodin, A., Sjoberg, K., Svanberg, P. A., & Backstrom, H. (1996). Verification of expected trends in urban traffic NOX emissions from long-term measurements of ambient NO2 concentrations in urban air. The Science of the Total Environment, 189/190, 213–220. doi:10.1016/0048-9697(96)05212-6.CrossRefGoogle Scholar
  43. Sram, R. J., Benes, I., Binkova, B., Dejmek, J., Horstman, D., Kotesovec, F., et al. (1996). Teplice program—the impact of air pollution on human health. Environmental Health Perspectives, 104(Suppl. 4), 699–714.CrossRefGoogle Scholar
  44. Van der Meulen, A., van Elzakker, B. G., & van sen Hooff, G. N. (1987). PM10: Results of a one year monitoring survey in the Netherlands. Journal of the Air Pollution Control Association, 37, 812–818.Google Scholar
  45. Zhang, M., Song, Y., & Cai, X. (2007). A health-based assessment of particulate air pollution in urban areas of Beijing in 2000–2004. The Science of the Total Environment, 376, 100–108. doi:10.1016/j.scitotenv.2007.01.085.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Faculty of ScienceCharles University in PraguePragueCzech Republic

Personalised recommendations