Using the Sediment Quality Triad to characterize baseline conditions in the Anacostia River, Washington, DC, USA

  • Beth L. McGee
  • Alfred E. Pinkney
  • David J. Velinsky
  • Jeffrey T. F. Ashley
  • Daniel J. Fisher
  • Leonard C. Ferrington
  • Teresa J. Norberg-King


The Sediment Quality Triad (SQT) consists of complementary measures of sediment chemistry, benthic community structure, and sediment toxicity. We applied the SQT at 20 stations in the tidal portion of the Anacostia River from Bladensburg, MD to Washington, DC to establish a baseline of conditions to evaluate the effects of management actions. Sediment toxicity was assessed using 10-day survival and growth tests with the freshwater amphipod, Hyalella azteca and the midge, Chironomus dilutus. Triplicate grabs were taken at each station for benthic community analysis and the Benthic Index of Biotic Integrity (B-IBI) was used to interpret the data. Only one station, #92, exhibited toxicity related to sediment contamination. Sediments from this station significantly inhibited growth of both test species, had the highest concentrations of contaminants, and had a degraded benthic community, indicated by a B-IBI of less than 3. Additional sediment from this station was tested and sediment toxicity identification evaluation (TIE) procedures tentatively characterized organic compounds as the cause of toxicity. Overall, forty percent of the stations were classified as degraded by the B-IBI. However, qualitative and quantitative comparisons with sediment quality benchmarks indicated no clear relationship between benthic community health and contaminant concentrations. This study provides a baseline for assessing the effectiveness of management actions in the Anacostia River.


Anacostia River Sediment Quality Triad Benthic community Toxicity identification evaluation 


  1. Besser, J. M., Ingersoll, C. G., Leonard, E. N., & Mount, D. R. (1998). Effect of zeolite on toxicity of ammonia in freshwater sediments: Implications for toxicity evaluation procedures. Environmental Toxicology and Chemistry, 17, 2310–2317. doi:10.1897/1551-5028(1998)017<2310:EOZOTO>2.3.CO;2.CrossRefGoogle Scholar
  2. Clifford, H. T., & Stephenson, W. (1975). An introduction to numerical classification. New York: Academic.Google Scholar
  3. DC (District of Columbia) Department of Health (2006). Public health advisory. Environmental Health Administration Division of Fisheries and Wildlife, Washington, DC.,a,1374,q,584650,dohNav_GID,1837.asp.Google Scholar
  4. EA (EA Engineering.Science and Technology, Inc.) (1999). Results of the bioassay/bioaccumulation testing and physical/chemical characterizations of sediment samples for the Kingman Lake restoration project. Prepared for US Army Corps of Engineers, Baltimore District, Baltimore, MD.Google Scholar
  5. Fisher, D. J., Ziegler, G. P., Yonkos, L. T., & Turley, B. S. (2001). Application of the 10-d acute and 28-d chronic Leptocheirus plumulosus sediment toxicity tests to the ambient toxicity assessment program. EPA 903-R-01-001, CBP/TRS 249/01. US Annapolis, MD: Environmental Protection Agency Chesapeake Bay Program.Google Scholar
  6. Galli, J., Graham, E., Murphy, T., Trieu, P., Guillozet, P., & Shepp, D. (2001). Anacostia watershed restoration indicators and targets for the period 2001–2010. Washington, DC: Metropolitan Washington Council of Governments.Google Scholar
  7. Hall, L. W., Anderson, R. D., Messing, A., Winfield, J., Jenkins, A. K., Weber, I. J., et al. (1999). Ambient toxicity testing in Chesapeake Bay: Year 8. Final Report to the U.S. Annapolis, MD: Environmental Protection Agency Chesapeake Bay Program.Google Scholar
  8. Hyland, J. L., Van Dolah, R. F., & Snoots, T. R. (1999). Predicting stress in benthic communities of southeastern estuaries in relation to chemical contamination of sediments. Environmental Toxicology and Chemistry, 18, 2557–2564. doi:10.1897/1551-5028(1999)018<2557:PSIBCO>2.3.CO;2.CrossRefGoogle Scholar
  9. Ingersoll, C. G., MacDonald, D. D., Wang, N., Crane, J. L., Field, L. J., Haverland, P. S., et al. (2001). Predictions of sediment toxicity using consensus-based freshwater sediment quality guidelines. Archives of Environmental Contamination and Toxicology, 41, 8–21. doi:10.1007/s002440010216.CrossRefGoogle Scholar
  10. Lenat, D. R. (1993). A biotic index for the southeastern United States: Derivation and list of tolerance values, with criteria for assigning water-quality ratings. Journal of the North American Benthological Society, 12, 279–290. doi:10.2307/1467463.CrossRefGoogle Scholar
  11. Llanso, R. J. (2002). Methods for calculating the Chesapeake Bay benthic index of biotic integrity. Columbia, MD: Versar.Google Scholar
  12. Long, E. R., & Chapman, P. M. (1985). A Sediment Quality Triad: Measures of sediment contamination, toxicity and infaunal community composition in Puget Sound. Marine Pollution Bulletin, 10, 405–415. doi:10.1016/0025-326X(85)90290-5.CrossRefGoogle Scholar
  13. Long, E. R., Field, L. J., & MacDonald, D. D. (1998). Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environmental Toxicology and Chemistry, 17, 714–727. doi:10.1897/1551-5028(1998)017<0714:PTIMSW>2.3.CO;2.CrossRefGoogle Scholar
  14. MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31. doi:10.1007/s002440010075.CrossRefGoogle Scholar
  15. McGee, B. L., & Pinkney, A. E. (2002). Using the Sediment Quality Triad to characterize baseline conditions in the Anacostia River, Washington, DC. CBFO-C02-09. Annapolis, MD: US Fish and Wildlife Service, Chesapeake Bay Field Office.Google Scholar
  16. McGee, B. L., Fisher, D. J., Yonkos, L. T., Ziegler, G. P., & Turley, S. (1999). Assessment of sediment contamination, acute toxicity and population viability of the estuarine amphipod Leptocheirus plumulosus in Baltimore Harbor. Environmental Toxicology and Chemistry, 18, 2151–2160. doi:10.1897/1551-5028(1999)018<2151:AOSCAT>2.3.CO;2.CrossRefGoogle Scholar
  17. MWCOG (Metropolitan Washington Council of Governments) (1998). Anacostia watershed restoration progress and conditions report 1990–1997. Washington, DC: MWCOG.Google Scholar
  18. Norberg-King, T. J., Sibley, P. K., Burton, G. A., Ingersoll, C. G., Kemble, N. E., Ireland, S., et al. (2006). Inter-laboratory evaluation of Hyalella azteca and Chironomus tentans short-term and long-term sediment toxicity tests. Environmental Toxicology and Chemistry, 25, 2662–2674. doi:10.1897/05-044R2.1.CrossRefGoogle Scholar
  19. Phelps, H. L. (1990). Anacostia River sediment toxicity: Localization and characterization using a Corbicula larva bioassay. Publication No. 88-06. Washington, DC: University of the District of Columbia, Water Resource Research Center.Google Scholar
  20. Pinkney, A. E., Harshbarger, J. C., May, E. B., & Melancon, M. J. (2001). Tumor prevalence and biomarkers of exposure in brown bullheads (Ameiu rus nebulosus) from the tidal Potomac River watershed. Environmental Toxicology and Chemistry, 20, 1196–1205. doi:10.1897/1551-5028(2001)020<1196:TPABOE>2.0.CO;2.CrossRefGoogle Scholar
  21. Pinkney, A. E., Harshbarger, J. C., May, E. B., & Reichert, W. L. (2004). Tumor prevalence and biomarkers of exposure and response in brown bullhead (Ameiurus nebulosus) from the Anacostia River, Washington, DC and Tuckahoe River, Maryland. Environmental Toxicology and Chemistry, 24, 638–647. doi:10.1897/03-77.CrossRefGoogle Scholar
  22. Schlekat, C. E., McGee, B. L., Boward, D. M., Reinharz, E., Velinsky, D. J., & Wade, T. L. (1994). Tidal river sediments in the Washington, D.C. area. III. Biological effects associated with sediment contamination. Estuaries, 17, 334–344. doi:10.2307/1352667.CrossRefGoogle Scholar
  23. Sokal, R. R., & Rohlf, F. J. (1981). Biometry (2nd edn.). New York: W.H. Freeman and Co.Google Scholar
  24. SRC (Syracuse Research Corporation) (2000). Interpretive summary of existing data relevant to potential contaminants of concern within the Anacostia River watershed. North Syracuse, NY: SRC.Google Scholar
  25. USEPA (2000). Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates (2nd edn.). EPA/600/R-99/064. Duluth, MN: Office of Research and Development.Google Scholar
  26. USEPA (2007). Sediment Toxicity Identification Evaluation (TIE) Phases I, II, and III guidance document. EPA/600/R-07/080. Washington, DC: Office of Research and Development.Google Scholar
  27. USEPA/US ACE (1995). QA/QC guidance for sampling and analysis of sediments, water and tissues for dredged material evaluations. EPA 823-B-95-001. Washington, DC.Google Scholar
  28. Velinsky, D. J., & Ashley, J. T. F. (2001). Sediment transport: Additional chemical analysis study, phase II, report no. 01-30D. Philadelphia, PA: Academy of Natural Sciences.Google Scholar
  29. Velinsky, D. J., Wade, T. L., Schlekat, C. E., McGee, B. L., & Presley, B. J. (1994). Tidal river sediments in the Washington, D.C. area. I. Distribution and sources of trace metals. Estuaries, 17, 305–320. doi:10.2307/1352665.CrossRefGoogle Scholar
  30. Wade, T. L., Velinsky, D. J., Reinharz, E., & Schlekat, C. E. (1974). Tidal river sediments in the Washington, D.C. area. II. Distribution and sources of organic contaminants. Estuaries, 17, 321–333. doi:10.2307/1352666.CrossRefGoogle Scholar
  31. Weisberg, S. B., Ranasinghi, J. A., Dauer, D. M., Schaffner, L. C., Diaz, R. J., & Frithsen, J. B. (1997). An estuarine Benthic Index of Biotic Integrity (B-IBI) for Chesapeake Bay. Estuaries, 20, 149–158. doi:10.2307/1352728.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Beth L. McGee
    • 1
    • 6
  • Alfred E. Pinkney
    • 1
  • David J. Velinsky
    • 2
  • Jeffrey T. F. Ashley
    • 2
  • Daniel J. Fisher
    • 3
  • Leonard C. Ferrington
    • 4
  • Teresa J. Norberg-King
    • 5
  1. 1.US Fish and Wildlife ServiceChesapeake Bay, Field OfficeAnnapolisUSA
  2. 2.Academy of Natural Sciences—Patrick CenterPhiladelphiaUSA
  3. 3.Wye Research and Education CenterUniversity of MarylandQueenstownUSA
  4. 4.Department of EntomologyUniversity of MinnesotaSaint PaulUSA
  5. 5.Mid-Continent Ecology DivisionUS Environmental Protection AgencyDuluthUSA
  6. 6.Chesapeake Bay FoundationAnnapolisUSA

Personalised recommendations