Environmental Monitoring and Assessment

, Volume 156, Issue 1–4, pp 17–36 | Cite as

Linking stream and landscape trajectories in the southern Appalachians

  • Edward P. Gardiner
  • Andrew B. Sutherland
  • Rebecca J. Bixby
  • Mark C. Scott
  • Judy L. Meyer
  • Gene S. Helfman
  • E. Fred Benfield
  • Cathy M. Pringle
  • Paul V. Bolstad
  • David N. Wear


A proactive sampling strategy was designed and implemented in 2000 to document changes in streams whose catchment land uses were predicted to change over the next two decades due to increased building density. Diatoms, macroinvertebrates, fishes, suspended sediment, dissolved solids, and bed composition were measured at two reference sites and six sites where a socioeconomic model suggested new building construction would influence stream ecosystems in the future; we label these “hazard sites.” The six hazard sites were located in catchments with forested and agricultural land use histories. Diatoms were species-poor at reference sites, where riparian forest cover was significantly higher than all other sites. Cluster analysis, Wishart’s distance function, non-metric multidimensional scaling, indicator species analysis, and t-tests show that macroinvertebrate assemblages, fish assemblages, in situ physical measures, and catchment land use and land cover were different between streams whose catchments were mostly forested, relative to those with agricultural land use histories and varying levels of current and predicted development. Comparing initial results with other regional studies, we predict homogenization of fauna with increased nutrient inputs and sediment associated with agricultural sites where more intense building activities are occurring. Based on statistical separability of sampled sites, catchment classes were identified and mapped throughout an 8,600 km2 region in western North Carolina’s Blue Ridge physiographic province. The classification is a generalized representation of two ongoing trajectories of land use change that we suggest will support streams with diverging biota and physical conditions over the next two decades.


Stream ecology Land use change Biotic response Water chemistry Watershed Catchment classification Ecological forecasting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, J. D. (2004). Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology Evolution and Systematics, 35, 257–284. doi:10.1146/annurev.ecolsys.35.120202.110122.CrossRefGoogle Scholar
  2. Berkman, H. E., & Rabeni, C. F. (1987). Effect of siltation on stream fish communities. Environmental Biology of Fishes, 18, 285–294. doi:10.1007/BF00004881.CrossRefGoogle Scholar
  3. Booth, D. B., & Jackson, R. (1997). Urbanization of aquatic systems: Degradation thresholds, stormwater detection, and the limits of mitigation. Journal of the American Water Resources Association, 33, 1077–1090. doi:10.1111/j.1752-1688.1997.tb04126.x.CrossRefGoogle Scholar
  4. Brant, L. A. (2003). A new species of Meridion (Bacillariophyceae) from western North Carolina. Southeastern Naturalist, 2, 409–418. doi:10.1656/1528-7092(2003)002[0409:ANSOMB]2.0.CO;2.CrossRefGoogle Scholar
  5. Camburn, K. E., Lowe, R. L., & Stoneburner, D. L. (1978). The haptobenthic diatom flora of Long Branch Creek, South Carolina. Nova Hedwigia, 30, 149–279.Google Scholar
  6. Carpenter, S. R., Ludwig, D., & Brock, W. A. (1999). Management of eutrophication for lakes subject to potentially irreversible change. Ecological Applications, 9, 751–771. doi:10.1890/1051-0761(1999)009[0751:MOEFLS]2.0.CO;2.CrossRefGoogle Scholar
  7. Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117–143. doi:10.1111/j.1442-9993.1993.tb00438.x.CrossRefGoogle Scholar
  8. Deal, J. M. (2001). Procedures for chemical analysis: Coweeta hydrologic laboratory. Retrieved from http://coweeta.ecology.uga.edu/webdocs/1/pdf/AnalyticalLabCookbook15Jan2002.pdf.
  9. Delong, M. D., & Brusven, M. A. (1998). Macroinvertebrate community structure along the longitudinal gradient of an agriculturally impacted stream. Environmental Management, 22, 445–457. doi:10.1007/s002679900118.CrossRefGoogle Scholar
  10. Desmond, J. S., Deutschman, D. H., & Zedler, J. B. (2002). Spatial and temporal variation in estuarine fish and invertebrate assemblages: Analysis of an 11-year data set. Estuaries, 25, 552–569CrossRefGoogle Scholar
  11. Doyle, M. W., Harbor, J. M., Rich, C. F. & Spacie, A. (2000). Examining the effects of urbanization on streams using indicators of geomorphic stability. Physical Geography, 21, 155–181.Google Scholar
  12. Dufrene, M., & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67, 345–366.Google Scholar
  13. Erhman, T. P., & Lamberti, G. A. (1992). Hydraulic and particulate matter retention in a 3rd-order Indiana stream. Journal of the North American Benthological Society, 11, 341–349. doi:10.2307/1467556.CrossRefGoogle Scholar
  14. Ford, J., & Rose, C. E. (2000). Characterizing small subbasins: A case study from coastal Oregon. Environmental Monitoring And Assessment, 64, 359–377. doi:10.1023/A:1006451420945.CrossRefGoogle Scholar
  15. Forman, R. T. T., & Alexander, L. E. (1998). Roads and their major ecological effects. Annual Review of Ecology and Systematics, 29, 207. doi:10.1146/annurev.ecolsys.29.1.207.CrossRefGoogle Scholar
  16. Freeman, M. C., Crawford, M. K., Barrett, J. C., Facey, D. E., Flood, M. G., Hill, J., et al. (1988). Fish assemblage stability in a southern Appalachian stream. Canadian Journal of Fisheries and Aquatic Sciences, 45, 1948–1958.CrossRefGoogle Scholar
  17. Gardiner, E. P. (2002). Geospatial techniques for stream research in the southern Blue Ridge Mountains. Dissertation, University of Georgia.Google Scholar
  18. Gergel, S. E., Turner, M. G., Miller, J. R., Melack, J. M., & Stanley, E. H. (2002). Landscape indicators of human impacts to riverine systems. Aquatic Sciences, 64, 118–128. doi:10.1007/s00027-002-8060-2.CrossRefGoogle Scholar
  19. Gordon, N. D., McMahon, T. A., & Finlayson, B. L. (1992). Stream hydrology: An introduction for ecologists. New York: Wiley.Google Scholar
  20. Greenwood, J. L., & Rosemond, A. D. (2005). Periphyton response to long-term nutrient enrichment in a shaded headwater stream. Canadian Journal of Fisheries and Aquatic Sciences, 62, 2033–2045. doi:10.1139/f05-117.CrossRefGoogle Scholar
  21. Greig-Smith, P. (1983). Quantitative plant ecology. Berkeley: University of California Press.Google Scholar
  22. Grimm, N. B., Grove, J. M., Pickett, S. T. A., & Redman, C. L. (2000). Integrated approaches to long-term studies of urban ecological systems. BioScience, 50, 571–584. doi:10.1641/0006-3568(2000)050[0571:IATLTO]2.0.CO;2.CrossRefGoogle Scholar
  23. Hampson, P. S., Treece, J. M. W., Johnson, G. C., Ahlstedt, S. A., & Connell, J. F. (2000). Water quality in the upper Tennessee River Basin, Tennessee, North Carolina, Virginia, and Georgia 1994–98. Circular 1205. Washington: USGS.Google Scholar
  24. Harding, J. S., Benfield, E. F., Bolstad, P. V., Helfman, G. S., & Jones III, E. B. D. (1998). Stream biodiversity: The ghost of land use past. Proceedings of the National Academy of Sciences of the United States of America, 95, 14843–14847. doi:10.1073/pnas.95.25.14843.CrossRefGoogle Scholar
  25. Hawkins, C. P., Norris, R. H., Gerritsen, J., Hughes, R. M., Jackson, S. K., Johnson, R. K., et al. (2000). Evaluation of the use of landscape classifications for the prediction of freshwater biota: Synthesis and recommendations. Journal of the North American Benthological Society, 19, 541–556. doi:10.2307/1468113.CrossRefGoogle Scholar
  26. Hawkins, C. P., & Vinson, M. R. (2000). Weak correspondence between landscape classifications and stream invertebrate assemblages: Implications for bioassessment. Journal of The North American Benthological Society, 19, 501–517. doi:10.2307/1468111.CrossRefGoogle Scholar
  27. Heino, J., Muotka, T., Mykra, H., Paavola, R., Hamalainen, H., & Koskenniemi, E. (2003). Defining macroinvertebrate assemblage types of headwater streams: Implications for bioassessment and conservation. Ecological Applications, 13, 842–852. doi:10.1890/1051-0761(2003)013[0842:DMATOH]2.0.CO;2.CrossRefGoogle Scholar
  28. Ilmonen, J., & Paasivirta, L. (2005). Benthic macrocrustacean and insect assemblages in relation to spring habitat characteristics: Patterns in abundance and diversity. Hydrobiologia, 533, 99–113. doi:10.1007/s10750-004-2399-4.CrossRefGoogle Scholar
  29. Jenkins, R. E., & Burkhead, N. M. (1994). Freshwater fishes of Virginia. Bethesda: American Fisheries Society.Google Scholar
  30. Jones, E. B. D., Helfman, G. S., Harper, J. O., & Bolstad, P. V. (1999). The effects of riparian forest removal on fish assemblages in southern Appalachian streams. Conservation Biology, 13, 1454–1465. doi:10.1046/j.1523-1739.1999.98172.x.CrossRefGoogle Scholar
  31. King, R. S., Baker, M. E., Whigham, D. F., Weller, D. E., Jordan, T. E., Kazyak, P. F., et al. (2005). Spatial considerations for linking watershed land cover to ecological indicators in streams. Ecological Applications, 15, 137–153. doi:10.1890/04-0481.CrossRefGoogle Scholar
  32. Kociolek, J. P., & Kingston, J. C. (1999). Taxonomy, ultrastructure, and distribution of some gomphonemoid diatoms (Bacillariophyceae: Gomphonemataceae) from rivers in the United States. Canadian Journal of Botany, 77, 686–705. doi:10.1139/cjb-77-5-686.CrossRefGoogle Scholar
  33. Kruskall, J. B., & Wish, M. (1978). Multidimensional scaling. Beverly Hills: Sage.Google Scholar
  34. Laacke, J. (2000). Life form (software), alpha release 0.14. Pacific southwest experiment station. California: Redding.Google Scholar
  35. Lenat, D. R., & Crawford, J. K. (1994). Effects of land use on water quality and aquatic biota of three North Carolina Piedmont streams. Hydrobiologia, 294, 185–199. doi:10.1007/BF00021291.CrossRefGoogle Scholar
  36. Loeb, S. L. (1981). An in situ method for measuring the primary productivity and standing crop of the epilithic periphyton community in lentic systems. Limnology and Oceanography, 26, 394–399.CrossRefGoogle Scholar
  37. Lowe, R. L., Golladay, S. W., & Webster, J. R. (1986). Periphyton response to nutrient manipulation in streams draining clearcut and forested watersheds. Journal of the North American Benthological Society, 5, 221–229. doi:10.2307/1467709.CrossRefGoogle Scholar
  38. Lowe, R. L., & LaLiberte, G. D. (1996). Benthic stream algae: Distribution and structure. In F.R. Hauer & G. A. Lamberti (Eds.), Methods in stream ecology (pp. 269–293). New York: Academic.Google Scholar
  39. Mathsoft (1999). S-Plus 2000 Professional Release 1. Lucent Technologies, Inc.Google Scholar
  40. McCormick, F. H., Peck, D. V., & Larsen, D. P. (2000). Comparison of geographic classification schemes for Mid-Atlantic stream fish assemblages. Journal of the North American Benthological Society, 19, 385–404. doi:10.2307/1468102.CrossRefGoogle Scholar
  41. McCune, B., & Mefford, M. J. (1999). PC-ORD v. 4.10. Multivariate analysis of ecological data. Gleneden Beach: MjM Software.Google Scholar
  42. McRae, G., Camp, D. K., Lyons, W. G., & Dix, T. L. (1998). Relating benthic infaunal community structure to environmental variables in estuaries using nonmetric multidimensional scaling and similarity analysis. Environmental Monitoring And Assessment, 51, 233–246. doi:10.1023/A:1005943504335.CrossRefGoogle Scholar
  43. Mosisch, T. D., Bunn, S. E., & Davies, P. M. (2001). The relative importance of shading and nutrients on algal production in subtropical streams. Freshwater Biology, 46, 1269–1278. doi:10.1046/j.1365-2427.2001.00747.x.CrossRefGoogle Scholar
  44. Mykra, H., Heino, J., & Muotka, T. (2004). Variability of lotic macroinvertebrate assemblages and stream habitat characteristics across hierarchical landscape classifications. Environmental Management, 34, 341–352. doi:10.1007/s00267-004-0236-1.CrossRefGoogle Scholar
  45. Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual Review of Ecology and Systematics, 32, 333–365. doi:10.1146/annurev.ecolsys.32.081501.114040.CrossRefGoogle Scholar
  46. Pickett, S. T. A., Cadenasso, M. L., Grove, J. M., Nilon, C. H., Pouyat, R. V., Zipperer, W. C., & Costanza, R. (2001). Urban ecological systems: Linking terrestrial ecological physical, and socioeconomic components of metropolitan areas. Annual Review of Ecology and Systematics, 32, 127–157. doi:10.1146/annurev.ecolsys.32.081501.114012.CrossRefGoogle Scholar
  47. Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B., et al. (1997). The natural flow regime: A new paradigm for riverine conservation and restoration. BioScience, 47, 769–784. doi:10.2307/1313099.CrossRefGoogle Scholar
  48. Potapova, M., & Charles, D. F. (2007). Diatom metrics for monitoring eutrophication in rivers of the United States. Ecological Indicators, 7, 48–70. doi:10.1016/j.ecolind.2005.10.001.CrossRefGoogle Scholar
  49. Rahel, F. J. (2000). Homogenization of fish faunas across the United States. Science, 288, 854–856. doi:10.1126/science.288.5467.854.CrossRefGoogle Scholar
  50. Rosemond, A. D. (1993). Interactions among irradiance, nutrients, and herbivores constrain a stream algal community. Oecologia, 94, 585–594. doi:10.1007/BF00566976.CrossRefGoogle Scholar
  51. Roy, A. H., Rosemond, A. D., Paul, M. J., Leigh, D. S., & Wallace, J. B. (2003). Stream macroinvertebrate response to catchment urbanisation (Georgia, U.S.A.). Freshwater Biology, 48, 329–346. doi:10.1046/j.1365-2427.2003.00979.x.CrossRefGoogle Scholar
  52. Scott, M. C. (2001). Integrating the stream and its valley: Land use change, aquatic habitat, and fish assemblages. Dissertation, University of Georgia.Google Scholar
  53. Scott, M. C., & Helfman, G. S. (2001). Native invasions, homogenization, and the mismeasure of integrity of fish assemblages. Fisheries, 26, 6–15. doi:10.1577/1548-8446(2001)026<0006:NIHATM>2.0.CO;2.CrossRefGoogle Scholar
  54. Scott, M. C., Helfman, G. S., McTammany, M. E., Benfield, E. F., & Bolstad, P. V. (2002). Multiscale influences on physical and chemical stream conditions across Blue Ridge landscapes. Water Resources Bulletin, 38, 1379–1392.Google Scholar
  55. Southwood, T. R. E. (1977). Habitat, the templet for ecological strategies? Journal of Animal Ecology, 46, 337–365. doi:10.2307/3817.Google Scholar
  56. Strange, E. M., Fausch, K. D., & Covich, A. P. (1999). Sustaining ecosystem services in human-dominated watersheds: Biohydrology and ecosystem processes in the South Platte River Basin. Environmental Management, 24, 39–54. doi:10.1007/s002679900213.CrossRefGoogle Scholar
  57. Sutherland, A. B., Meyer, J. L., & Gardiner, E. P. (2002). Effects of land cover on sediment regime and fish assemblage structure in four southern Appalachian streams. Freshwater Biology, 47, 1791–1805. doi:10.1046/j.1365-2427.2002.00927.x.CrossRefGoogle Scholar
  58. Turner, M. G., Wear, D. N., & Flamm, R. O. (1996). Land ownership and land-cover change in the southern Appalachian highlands and the Olympic peninsula. Ecological Applications, 6, 1150–1172. doi:10.2307/2269599.CrossRefGoogle Scholar
  59. Wallace, J. B., Webster, J. R., & Lowe, R. L. (1992). High-gradient streams of the Appalachians. In C. T. Hackney, S. M. Adams, & W. A. Martin (Eds.), Biodiversity of the Southeastern United States/ aquatic communities (pp. 131–191). New York: Wiley.Google Scholar
  60. Walters, D. M., Leigh, D. S., & Bearden, A. B. (2003). Urbanization, sedimentation, and the homogenization of fish assemblages in the Etowah River Basin, USA. Hydrobiologia, 494, 5–10. doi:10.1023/A:1025412804074.CrossRefGoogle Scholar
  61. Wang, L., Lyons, J., Kanehl, P., Bannerman, R., & Emmons, E. (2000). Watershed urbanization and changes in fish communities in southeastern Wisconsin streams. Journal of the American Water Resources Association, 36, 1173–1189. doi:10.1111/j.1752-1688.2000.tb05719.x.CrossRefGoogle Scholar
  62. Wang, L. Z., Lyons, J., Kanehl, P., & Gatti, R. (1997). Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries, 22, 6–12. doi:10.1577/1548-8446(1997)022<0006:IOWLUO>2.0.CO;2.CrossRefGoogle Scholar
  63. Wang, L. Z., Lyons, J., & Kanehl, P. (2003). Impacts of urban land cover on trout streams in Wisconsin and Minnesota. Transactions of the American Fisheries Society, 132, 825–839. doi:10.1577/T02-099.CrossRefGoogle Scholar
  64. Waters, T. F. (1995). Sediment in streams: Sources, biological effects, and control. American Fisheries Society Monograph 7.Google Scholar
  65. Wear, D. N., & Bolstad, P. V. (1998). Land use changes in Southern Appalachian landscapes: Spatial analysis and forecast evaluation. Ecosystems, 1, 575–594. doi:10.1007/s100219900052.CrossRefGoogle Scholar
  66. Wetzel, R. G., & Likens, G. E. (1991). Limmnological analyses. New York: Springer.Google Scholar
  67. Wilson, M. A., & Carpenter, S. R. (1999). Economic valuation of freshwater ecosystem services in the United States: 1971–1997. Ecological Applications, 9,772–783.Google Scholar
  68. Wishart, D. (1969). An algorithm for hierarchical classifications. Biometrics, 25, 165–170. doi:10.2307/2528688.CrossRefGoogle Scholar
  69. Wood, P. J., & Armitage, P. D. (1997). Biological effects of fine sediment in the lotic environment. Environmental Management, 21, 203–217. doi:10.1007/s002679900019.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Edward P. Gardiner
    • 1
    • 2
  • Andrew B. Sutherland
    • 3
  • Rebecca J. Bixby
    • 4
  • Mark C. Scott
    • 5
  • Judy L. Meyer
    • 6
  • Gene S. Helfman
    • 6
  • E. Fred Benfield
    • 7
  • Cathy M. Pringle
    • 6
  • Paul V. Bolstad
    • 8
  • David N. Wear
    • 9
  1. 1.American Museum of Natural HistoryNew YorkUSA
  2. 2.Department of GeographyUniversity of GeorgiaAthensUSA
  3. 3.Rollins CollegeWinter ParkUSA
  4. 4.Department of BiologyUniversity of New MexicoAlbuquerqueUSA
  5. 5.South Carolina Department of Natural ResourcesPendletonUSA
  6. 6.Institute of EcologyUniversity of GeorgiaAthensUSA
  7. 7.Department of BiologyVirginia Polytechnic InstituteBlacksburgUSA
  8. 8.Department of Forest ResourcesUniversity of MinnesotaSt. PaulUSA
  9. 9.USDA Forest ServiceResearch Triangle ParkUSA

Personalised recommendations