Advertisement

Environmental Monitoring and Assessment

, Volume 155, Issue 1–4, pp 467–475 | Cite as

Effects of soil amendments on the bioavailability of heavy metals from zinc mine tailings

  • Virendra Misra
  • Anjana Tiwari
  • Bhaskar Shukla
  • Chandra Shekhar Seth
Article

Abstract

A study was conducted to test the effects of soil amendments on the bioavailability of heavy metals in a zinc mine tailings containing soil to plants, using the Indian mustard plant (Brassica juncea) as a test organism. Zinc mine tailing containing soil was amended with humus soil (HS) and phosphatic clay (PC). The zinc mine tailing containing soil (ZMTS) was characterized for heavy metals. It was mixed with PC and HS, and four mixtures were prepared. The first mixture contained ZMTS, and served as a control. The second mixture contained ZMTS and PC in the ratio of 1:1 (w/w). The third mixture contained ZMTS and HS in the ratio of 1:1(w/w). The fourth mixture containing ZMTS, PC and HS in the ratio of (2:1:1) (w/w). A slight increase in the bioavailability of Pb, Cu, Zn and Mn was noticed with increase in the incubation time from 14 to 42 days. The bioavailability of Pb, Cu, Zn and Mn from ZMTS alone in Brassica plant was in the range of 94–99% up to 42 days. Addition of PC and HS to the ZMTS soil reduced the bioavailabilities of Pb by (15%), of Cu by (20%), of Zn by (20%) and of Mn by (25%) in the mustard plant. The data showed that PC in the presence of HS had a high affinity for the heavy metals in the order of Pb, Cu, Zn and Mn.

Keywords

Bioavailability Brassica juncea Heavy metals Humus soil Immobilization Phosphatic clay Zinc mine tailings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adriano, D. C. (2001). Trace elements in terrestrial environments: Biogeochemistry, bioavailability and risks of metals (2nd ed.). New York: Springer.Google Scholar
  2. Alcacio, T. E., Hesterberg, D., Chou, J. W., Martin, J. D., Beauchemin, S., & Sayers, D. E. (2001). Molecular scale characteristics of Cu (II) bonding in goethite–humate complexes. Geochimica Cosmochimica Acta, 65, 1355–1366. doi:10.1016/S0016-7037(01)00546-4.CrossRefGoogle Scholar
  3. Alloway, B. J. (1995). Cadmium. In B. J. Alloway (Ed.), Heavy metals in soils. London, UK: Blackie Academic.Google Scholar
  4. Arias, M., Barral, M. T., & Mijuto, J. C. (2002). Enhancement of Cu and Cd adsorption on kaolin by the presence of humic acids. Chemosphere, 48, 1081–1088. doi:10.1016/S0045-6535(02)00169-8.CrossRefGoogle Scholar
  5. Baker, A. J. M., Reeves, R. D., & Hajar, A. S. M. (1994). Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Oresl (Brassicaceae). New Phytologist, 127, 61–68. doi:10.1111/j.1469-8137.1994.tb04259.x.CrossRefGoogle Scholar
  6. Basta, N. T., & Gradwohl, R. (2000). Estimation of heavy metal bioavailability in smelter-contaminated soils by a sequential extraction procedure. Journal of Soil Contamination, 9, 149–164. doi:10.1080/10588330008984181.CrossRefGoogle Scholar
  7. Basta, N. T., Ryan, J. A., & Chaney, R. L. (2005). Trace element chemistry in residual-treated soil: Key concepts and metal bioavailability. Journal of Environmental Quality, 34, 49–63.Google Scholar
  8. Beckett, P. H. T., Davis, R. D., & Brindley, P. (1979). The disposal of sewage sludge onto farmland: The scope of the problems of toxic elements. Water Pollution Control, 78, 419–445.Google Scholar
  9. Bell, F. G., Bullock, S. E. T., Halbich, T. F. J., & Lindsay, P. (2001). Environmental impacts associated with an abandoned mine in the Witbank Coalfield, South Africa. International Journal of Coal Geology, 45, 195–216. doi:10.1016/S0166-5162(00)00033-1.CrossRefGoogle Scholar
  10. Bradl, H. B. (2004). Adsorption of heavy metal ions in soils and soil constituents. Journal of Colloid and Interface Science, 277, 1–18. doi:10.1016/j.jcis.2004.04.005.CrossRefGoogle Scholar
  11. Brown, G. E., Jr., & Parks, G. A. (2001). Sorption of trace elements on mineral surfaces: Modern perspectives from spectroscopic studies, and comments on sorption in the marine environment. International Geology Review, 43, 963–1073.CrossRefGoogle Scholar
  12. Brown, P. A., Gill, S. A., & Allen, S. T. (2000). Metal removal from wastewater using peat. Water Resources, 34, 3907–3916. doi:10.1016/S0043-1354(00)00152-4.Google Scholar
  13. Cao, X., Ma, L. Q., Rhue, D. R., & Appel, C. S. (2004). Mechanism of lead, copper and zinc retention by phosphate rock. Environmental Pollution, 131, 435–444. doi:10.1016/j.envpol.2004.03.003.CrossRefGoogle Scholar
  14. Chaney, R. L., Ryan, J. A., Li, Y. M., & Brown, S. L. (1999). Soil cadmium as a threat to human health. In M. J. McLaughlin, & B. R. Singh (Eds.), Cadmium in soils and plants. Dordrecht, the Netherlands: Kluwer Academic.Google Scholar
  15. Chaney, R. L., Angle, J. S., Broadhurst, C. L., Peters, C. A., Tappero, R. V., & Sparks, D. L. (2007). Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. Journal of Environmental Quality, 36, 1429–1443. doi:10.2134/jeq2006.0514.CrossRefGoogle Scholar
  16. Ciccu, R., Ghiani, M., Serci, A., Fadda, S., Peretti, R., & Zucca, A. (2003). Heavy metal immobilization in the mining-contaminated soils using various industrial wastes. Minerals Engineering, 16, 187–192. doi:10.1016/S0892-6875(03)00003-7.CrossRefGoogle Scholar
  17. Dayton, E. A. (2003). Relative contribution of soil properties to modifying the phytotoxicity and bioaccumulation of cadmium, lead and zinc to lettuce. Ph.D. dissertation, Oklahoma State Univ., Stillwater.Google Scholar
  18. Dudka, S., & Adriano, D. C. (1997). Environmental impacts of metal ore mining and processing: A review. Journal of Environmental Quality, 26, 590–602.Google Scholar
  19. Fisher, R. A. (1950). Statistical methods for research work (11th ed.). Edinburgh, UK: Oliver and Boyd.Google Scholar
  20. Geebelen, W., Adriano, D. C., van der Lelie, D., Mench, M., Carleer, R., Clijsters, H., et al. (2003). Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils. Plant Soil, 249, 217–228. doi:10.1023/A:1022534524063.CrossRefGoogle Scholar
  21. Heidmann, I., Christl, I., & Kretzschmar, R. (2005). Sorption of Cu and to kaolinite–fulvic acid colloids, assessment of sorbent interactions. Geochimica Cosmochimica Acta, 69, 1675–1686. doi:10.1016/j.gca.2004.10.002.CrossRefGoogle Scholar
  22. Hendershot, W. H., Lalande, H., & Duquette, M. (1993). Soil pH. In M. R. Carter (Ed.), Soil sampling and method of analysis. USA: Lewis.Google Scholar
  23. Hesse, P. R. (1971). Cation and anion exchange properties. In A textbook of soil chemical analysis. London, UK: Murray.Google Scholar
  24. Hettiarachchi, G. M., Ryan, J. A., Chaney, R. L., & LaFleur, C. M. (2003). Sorption and desorption of cadmium by different fractions of biosolids-amended soils. Journal of Environmental Quality, 32, 1684–1693.Google Scholar
  25. Hettiarachchi, G. M., Scheckel, K. G., Ryan, J. A., Sutton, S. R., & Newville, M. (2006). Micro-XANES and micro-XRF investigations of metal binding mechanisms in biosolids. Journal of Environmental Quality, 35, 341–352.Google Scholar
  26. Hooda, P. S., & Alloway, B. J. (1996). The effect of liming on heavy metal concentrations in wheat, carrots and spinach grown on previously sludge-applied soils. Journal of Agricultural Sciences, 127, 289–294.CrossRefGoogle Scholar
  27. Jiang, X. J., Luo, Y. M., Zhao, Q. G., Baker, A. J. M., Christie, P., & Wong, M. H. (2003). Soil Cd availability to Indian mustard and environmental risk following EDTA addition to Cd-contaminated soil. Chemosphere, 50, 813–818. doi:10.1016/S0045-6535(02)00224-2.CrossRefGoogle Scholar
  28. Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants. Boca Raton, FL: Lewis.Google Scholar
  29. Laperche, V., Traina, S. J., Gaddam, P., & Logan, T. J. (1996). Chemical and mineralogical characterizations of Pb in a contaminated soil: reactions with synthetic apatite. Environmental Science and Technology, 30, 3321–3326. doi:10.1021/es960141u.CrossRefGoogle Scholar
  30. Lee, J. S., & Chon, H. T. (2003). Exposure assessment of heavy metals on abandoned metal mine areas by ingestion of soil, crop plant and ground water. In XIIth international conference on heavy metals in the environment 26–30 May. Grenoble, France.Google Scholar
  31. Li, Z., Ryan, J. A., Chen, J. L., & Al-Abed, S. R. (2001). Cadmium adsorption on biosolids-amended soils. Journal of Environmental Quality, 30, 903–911.Google Scholar
  32. Lombi, E., Hamon, R. E., McGrath, S. P., & McLaughlin, M. J. (2003). Lability of Cd, Cu and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques. Environmental Science and Technology, 37, 979–984. doi:10.1021/es026083w.CrossRefGoogle Scholar
  33. Luo, Y. M., & Christie, P. (1998). Bioavailability of Cu and Zn in soils treated with alkaline stabilized sewage sludges. Journal of Environmental Quality, 27, 335–342.Google Scholar
  34. Ma, L. Q., Logan, T. J., & Traina, S. J. (1995). Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environmental Science and Technology, 29, 1118–1126. doi:10.1021/es00004a034.CrossRefGoogle Scholar
  35. Ma, L. Q., Traina, S. J., Logan, T. J., & Rayan, J. A. (1994). Effect of aqueous Al, Cd, Cu, Fe(II), Ni and Zn on Pb immobilization by hydroxyapatite. Environmental Science and Technology, 28, 1219–1228. doi:10.1021/es00056a007.CrossRefGoogle Scholar
  36. McBride, M. B. (1995). Toxic metal accumulation from agricultural use of sludge: Are USEPA regulations protective? Journal of Environmental Quality, 24, 5–18.Google Scholar
  37. McGowen, S. L., Basta, N. T., & Brown, G. O. (2001). Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter contaminated soil. Journal of Environmental Quality, 30, 493–500.Google Scholar
  38. Mench, M. J., Didier, V., Loffler, M., Gomez, A., & Masson, P. (1994a). A mimicked in-situ remediation study of metal-contaminated soils with emphasis on cadmium and lead. Journal of Environmental Quality, 23, 58–63.Google Scholar
  39. Mench, M., Vangronsveld, J., Didier, V., & Clijsters, H. (1994b). Evaluation and metal mobility, plant avail ability and immobilization by chemical agents in a limed-silty soil. Environmental Pollution, 86, 279–286. doi:10.1016/0269-7491(94)90168-6.CrossRefGoogle Scholar
  40. Misra, V., & Pandey, S. D. (2004). Remediation of contaminated soil by amendment of non-humus soil with humus rich soil for better metal immobilization. Bulletin of Environmental Contamination and Toxicology, 73, 561–567. doi:10.1007/s00128-004-0465-2.CrossRefGoogle Scholar
  41. Misra, V., & Pandey, S. D. (2005). Immobilization of heavy metals in contaminated soil using nonhumus–humus soil and hydroxyapatite. Bulletin of Environmental Contamination and Toxicology, 74, 725–731. doi:10.1007/s00128-005-0642-y.CrossRefGoogle Scholar
  42. Oste, L. A., Lexmond, T. M., & Van Riemsdijk, W. H. (2002). Metal immobilization is soils using synthetic zeolites. Journal of Environmental Quality, 31, 813–821.Google Scholar
  43. Passariello, B., Giuliano, V., Quaresima, S., Barbaro, M., Caroli, S., Forte, G., et al. (2002). Evaluation of the environmental contamination at an abandoned mine site. Microchemical Journal, 73, 245–250. doi:10.1016/S0026-265X(02)00069-3.CrossRefGoogle Scholar
  44. Rulkens, W. H., Tichy, R., & Grotenhuis, J. T. C. (1998). Remediation of polluted soil and sediment: Perspectives and failures. Water Science and Technology, 37, 27–35. doi:10.1016/S0273-1223(98)00232-7.CrossRefGoogle Scholar
  45. Salomons, W. (1995). Environmental impact of metals derived from mining activities: Processes, predictions, prevention. Journal of Geochemical Exploration, 52, 5–23. doi:10.1016/0375-6742(94)00039-E.CrossRefGoogle Scholar
  46. Salt, D. E., Pickering, I. J., Prince, R. C., Gleba, D., Dushenkov, S., Smith, R. D., et al. (1997). Metal accumulation by aquacultured seedlings of Indian mustard. Environmental Science and Technology, 31, 1636–1644. doi:10.1021/es960802n.CrossRefGoogle Scholar
  47. Sauve, S., Martinez, C. E., McBride, M., & Hendershot, W. (2000). Adsorption of free lead (Pb2 + ) by pedogenic oxides, ferrihydrite and leaf compost. Soil Science Society of American Journal, 64, 595–599.Google Scholar
  48. Schwartz, C., Gerard, E., Perronnet, K., & Morel, J. L. (2001). Measurement of in situ phytoextraction of Zinc by spontaneous metallophytes growing on a former smelter site. Science of the Total Environment, 279, 215–221. doi:10.1016/S0048-9697(01)00784-7.CrossRefGoogle Scholar
  49. Shallari, S., Schwartz, C., Hasko, A., & Morel, J. L. (1998). Heavy metals in soils and plants of serpentine and industrial sites of Albania. Science of the Total Environment, 209, 133–142. doi:10.1016/S0048-9697(97)00312-4.CrossRefGoogle Scholar
  50. Singh, S. P., Ma, L. Q., & Harris, W. G. (2001). Heavy metal interaction with phosphatic clay: Sorption and desorption. Journal of Environmental Quality, 30, 1961–1968.CrossRefGoogle Scholar
  51. Sparks, D. L. (2003). Environmental soil chemistry (2nd ed.). San Diego, CA: Academic.Google Scholar
  52. Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions (2nd ed.). New York: Wiley.Google Scholar
  53. Stumm, W. (1992). Chemistry of the solid-water interface: Processes at the mineral-water and particle-water interface in natural systems. New York: Wiley.Google Scholar
  54. Vangronsveld, J., Colpaert, J. V., & Van Tichelen, K. K. (1996). Reclamation of a bare industrial area contaminated by non-ferrous metals: Physico-chemical and biological evaluation of the durability of soil treatment and revegetation. Environmental Pollution, 94, 131–140. doi:10.1016/S0269-7491(96)00082-6.CrossRefGoogle Scholar
  55. Vega, F. A., Covelo, E. F., & Andrade, M. L. (2005). Limiting factors for reforestation of mine spoils from Galicia (Spain). Land Degradation and Development, 16, 27–36. doi:10.1002/ldr.642.CrossRefGoogle Scholar
  56. Wong, J. W. C., Ip, C. M., & Wong, M. H. (1998). Acid-forming capacity of Pb–Zn mine tailings and its implications for mine rehabilitation. Environmental Geochemistry and Health, 20, 149–155. doi:10.1023/A:1006589124204.CrossRefGoogle Scholar
  57. Xu, Y., Schwartz, F. W., & Traina, S. J. (1994). Sorption of Zn + 2 and Cd + 2 on the hydroxyapatite surface. Environmental Science and Technology, 28, 1472–1480. doi:10.1021/es00057a015.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Virendra Misra
    • 1
  • Anjana Tiwari
    • 1
  • Bhaskar Shukla
    • 1
  • Chandra Shekhar Seth
    • 1
  1. 1.Ecotoxicology DivisionIndian Institute of Toxicology ResearchM.G. MargIndia

Personalised recommendations