Skip to main content
Log in

Comparative study of the sensitivity to cadmium of two populations of Gambusia affinis from two different sites

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study aims to demonstrate the influence of animals’ origin on their sensitivity toward heavy metals. For this purpose, we compared LC50 of cadmium in two populations of Gambusia affinis captured in two geographically isolated environments in the east of Tunisia; Oued El Gsil in the city of Monastir (S2) and Oued Chenini in the region of Gabes (S1). Although physicochemical parameters of the water (pH, dissolved oxygen and salinity) are similar in the two studied sites, cadmium concentrations in water, sediments and fish tissues from S1 are significantly higher (P < 0.01) than those from S2, 48-h and 96-h LC50 of the (S1) population are significantly higher than those from S2. In the same way, the offspring of the polluted site (S1) population exhibit 48-h and 96-h LC50 values much higher than those of the reference site (S2) population. These results show that the population of the Gabes region is more resistant to cadmium than that of the Monastir region and that this resistance could have a genetic basis. These results indicate the influence of the origin of animals that has to be taken into account not only in laboratory toxicity tests, but also in field ecotoxicological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, S., Sadinski, W., Shugart, L., Brussard, P., Depledge, M., Ford, T., et al. (1994). Genetic and molecular ecotoxicology: a research framework. Environmental Health Perspectives, 102, 3–8.

    Google Scholar 

  • Andreasen, J. k. (1985). Insecticide resistance in mosquitofish of the lower Rio Grande Valley of Texas an ecological hazard? Archives of Environmental Contamination and Toxicology, 14, 573–577. doi:10.1007/BF01055387.

    Article  CAS  Google Scholar 

  • Antonovics, J., Bradshaw, A. D., & Turner, T. (1971). Heavy metal tolerance in plants. Adv Ecology Ressources, 7, 1–85.

    Article  Google Scholar 

  • Bervoets, L., & Blust, R. (2003). Metal concentrations in water, sediment and gudgeon (Gobio gobio) from a pollution gradient: relationship with fish condition factor. Environmental Pollution, 126, 9–19. doi:10.1016/S0269-7491(03)00173-8.

    Article  CAS  Google Scholar 

  • Byczkowski, J. Z., & Sorenson, J. R. J. (1984). Effects of metal compounds on mitochondrial function: a review. The Science of the Total Environment, 37, 133–162. doi:10.1016/0048-9697(84)90091-3.

    Article  CAS  Google Scholar 

  • De Nicola, M., Cardellicchio, N., Gambardella, C., Guarino, S. M., & Marra, C. (1993). Effects of cadmium on survival, bioaccumulation, histopathology and PGM polymorphism in the marine Isopod Idotea baltica. In R. Dallinger & P. S. Rainbow (Eds.), Ecotoxicology of Metals in invertebrates (pp. 103–116). Florida: CRC.

    Google Scholar 

  • Diamond, S. A., Newman, M. C., Mulvey, M., & Guttman, S. I. (1991). Allozyme genotype and time to death of mosquitofish, Gambusia holbrooki, during acute inorganic mercury exposure: a comparison of populations. Aquatic Toxicology (Amsterdam, Netherlands), 21, 119–134. doi:10.1016/0166-445X(91)90010-7.

    CAS  Google Scholar 

  • Dutta, T. K., & Kaviraj, A. (2001). Acute toxicity of cadmium to fish Labeo rohita and copepod Diaptomus forbesi pre-exposed to CaO and KMnO4. Chemosphere, 42, 955–958. doi:10.1016/S0045-6535(00)00166-1.

    Article  CAS  Google Scholar 

  • Eisler, R. (1971). Cadmium poisoning in Fundulus heteroclitus and other marine organisms. Journal of Fish Resources Board Canada, 28, 1225–1234.

    CAS  Google Scholar 

  • Fargasova, A. (1998). Comparative acute toxicity of Cu, Mn, Mo, Ni, and V to Chironomus plumosus larvae and Tubilfex worms. Biologia, 53, 315–319.

    CAS  Google Scholar 

  • Finney, D. J. (1971). Probit analysis (p. 337). London: Cambrige University Press.

    Google Scholar 

  • Gillespie, R. B., & Guttman, S. I. (1993). Correlations between water quality and frequencies of allozyme genotypes in spotfin shiner (Notropis spilopteris) populations. Environmental Pollution, 81, 147–150. doi:10.1016/0269-7491(93)90079-4.

    Article  CAS  Google Scholar 

  • Groenendijk, D., van Opzeeland, B., Pires, L. M. D., & Postma, J. F. (1999). Fluctuating life-history parameters indicating temporal variability in metal adaptation in riverine chironomiuds. Archives of Environmental Contamination and Toxicology, 37, 175–181. doi:10.1007/s002449900503.

    Article  CAS  Google Scholar 

  • Hamza-Chaffai, A., Cossin, R. P., Amiard-Triquet, C., & El Abed, A. (1995). Physico-chemical forms of storage of metals (Cd, Cu, and Zn) and metallothionein-like proteins in gills and liver of marine fish from the Tunisian coast: ecotoxicological consequences. Comparative Biochemistry and Physiology, 102(C, no 2), 329–341.

    Google Scholar 

  • Hawkins, W. E., Tate, L. G., & Sarphie, T. G. (1980). Acute effects of cadmium on the spot, Leiostomus xanthurus (teleost): tissue distribution and renal ultastructure. Journal of Toxicology and Environmental Health, 6, 283–295.

    Article  CAS  Google Scholar 

  • Heagler, M. G., Newman, M. C., Mulvey, M., & Dixon, P. M. (1993). Allozyme genotype in mosquitofish Gambusia holbrooki, during mercury exposure: temporal stability, concentration effects and field verification. Environmental Toxicology and Chemistry, 12, 385–395. doi:10.1897/1552-8618(1993)12[385:AGIMGH]2.0.CO;2.

    Article  CAS  Google Scholar 

  • Hiatt, V., & Huff, E. (1975). The environmental impact of cadmium: an overview. The International Journal of Environmental Studies, 7, 277–285. doi:10.1080/00207237508709704.

    Article  CAS  Google Scholar 

  • Hoeskstra, J. A., Vaal, M. A., Notenboom, J., & Sloof, W. (1994). Variation in the sensitivity of aquatic species to toxicants. Bulletin of Environmental Contamination and Toxicology, 53, 98–105.

    Google Scholar 

  • Hopps, H. C. (1974). Overview. In Geochestry and Environment (Vol. 1, pp. 3–21). Washington, DC: American Academie of Science.

    Google Scholar 

  • Hu, Z. A., & Wang, H. X. (2001). Molecular mechanism of stress adaptation in plant natural populations. Acta Botanica Sinica, 43, 111–118.

    CAS  Google Scholar 

  • Ivorra, N., Barranguet, C., Jonker, M., Kraak, M. H. S., & Admiraal, W. (2002). Metal-induced tolerance in the freshwater microbentic diatom Gomphonema parvulum. Environmental Pollution, 116, 147–157. doi:10.1016/S0269-7491(01)00152-X.

    Article  CAS  Google Scholar 

  • Kaviraj, A., & Das, B. K. (1994). Cadmium induced changes in fish and other aquatic organisms. Journal of Natural Conservation, 6, 105–122.

    Google Scholar 

  • Keklak, M. M., Newman, M. C., & Mulvey, M. (1994). Enhanced uranium tolerance of an exposed population of the eastern mosquitofish Gambusia holbrooki. Archives of Environmental Contamination and Toxicology, 27, 20–24. doi:10.1007/BF00203882.

    Article  CAS  Google Scholar 

  • Klerks, P. L., & Levinton, J. S. (1989). Rapid evolution of metal resistance in benthic oligochaete inhabiting a metal-polluted site. The Biological Bulletin, 176, 135–141. doi:10.2307/1541580.

    Article  CAS  Google Scholar 

  • Klerks, P. L., & Weis, J. S. (1987). Genetic adaptation to heavy metals in aquatic organism a review. Environmental Pollution, 45, 173–205. doi:10.1016/0269-7491(87)90057-1.

    Article  CAS  Google Scholar 

  • Kopp, R. L., Guttman, S. I., & Wissing, T. E. (1992). Genetic indicators of environmental stress in central mudminnow (Umbra limi) populations exposed to acid deposition in the Adirondack mountains. Environmental Toxicology and Chemistry, 11, 665–676. doi:10.1897/1552-8618(1992)11[665:GIOESI]2.0.CO;2.

    Article  CAS  Google Scholar 

  • Miliou, H., Zaboukas, N., & Moraitou Apostolopoulu, M. (1998). Biochemical composition, growth, and survival of the Guppy, Poecilia reticulata, during chronic sublethal exposure to cadmium. Environmental Contamination and Toxicology, 35, 58–63. doi:10.1007/s002449900349.

    Article  CAS  Google Scholar 

  • Nacci, D., Covio, L., Champhri, D., Jayaramam, S., Micknney, R., Gleason, T. R., et al. (1999). Adaptations wild populations of the estuarine fish Fundulus heteroclitus to persistent environmental contaminants. Marine Biology (Berlin), 134, 9–17. doi:10.1007/s002270050520.

    Article  Google Scholar 

  • Page, A. L., Binghmam, F. T., & Chang, A. C. (1981). Effect of heavy metal pollution on plants. Applied Science, London (N.W. Lepp.Edt.), 1, 77–109.

    CAS  Google Scholar 

  • Paternello, T., Guinez, K., & Battaglia, B. (1991). Effects of pollution on heterozygosity in the barnacle Balanus amphitrite (Cirripedia: Thoracica). Marine Ecology Progress Series, 70, 237–243. doi:10.3354/meps070237.

    Article  Google Scholar 

  • Reinecke, S. A., Prinsloo, M. W., & Reinecke, A. J. (1999). Resistance of Eisenia fetida (Oligochaeta) to cadmium after long-term exposure. Ecotoxicology and Environmental Safety, 42, 75–80. doi:10.1006/eesa.1998.1731.

    Article  CAS  Google Scholar 

  • Reznick, D. N., & Ghalambor, C. K. (2001). The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptative evolution. Genetica, 112, 183–198. doi:10.1023/A:1013352109042.

    Article  Google Scholar 

  • Ryan, J. A., Pahren, H. R., & Lucas, J. B. (1982). Controlling cadmium in the human health chain: Review and rationale based on health effects. Environmental Research, 28, 251–302. doi:10.1016/0013-9351(82)90128-1.

    Article  CAS  Google Scholar 

  • Schlueter, M. A., Guttman, S. I., Oris, J. T., & Bailer, A. J. (1995). Survival of copper-exposed juvenile fathead minnows (Pimephales promelas) differs among allozyme genotypes. Environmental Toxicology and Chemistry, 10, 1727–1734. doi:10.1897/1552-8618(1995)14[1727:SOCJFM]2.0.CO;2.

    Article  Google Scholar 

  • Serbaji, M. M. (2000). Utilisation d’un SIG multi-sources pour la compréhension et la gestion intégrée de l’écosystème côtier de la région de Sfax (Tunisie). Thèse Doctorat Géologie Université Tunis II (p. 226).

  • Sokolova, I. M. (2004). Cadmium effects on mitochondrial function are enhanced by elevated temperatures in marine poikilotherm, Crassostrea virginica Gmelin (Bivalvia: Ostreidae). The Journal of Experimental Biology, 207, 2639–2648. doi:10.1242/jeb.01054.

    Article  CAS  Google Scholar 

  • Sokolova, I. M., Evans, S., & Hughes, F. M. (2004). Cadmium-induced apoptosis in oyster hemocytes involves disturbance of cellular energy balance but no mitochondrial permeability transition. The Journal of Experimental Biology, 207, 3369–3380. doi:10.1242/jeb.01152.

    Article  CAS  Google Scholar 

  • Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine, 18, 321–336. doi:10.1016/0891-5849(94)00159-H.

    Article  CAS  Google Scholar 

  • Tatara, C. P., Newman, M. C., & Mulvey, M. (2001). Effect of mercury and Gpi-2 genotype on standard metabolic rate of eastern mosquitofish (Gambusia holbrooki). Environmental Toxicology and Chemistry, 20, 782–786. doi:10.1897/1551-5028(2001)020<0782:EOMAGG>2.0.CO;2.

    Article  CAS  Google Scholar 

  • Viarengo, A. (1994). Heavy metal cytotoxicity in marine organisms: effects on Ca2 +  homeostasis and possible alteration of signal transduction pathway. Advance Comparative Environmental Physiology, 20, 85–109.

    CAS  Google Scholar 

  • Warchalowska-Sliwa, E., Niklinska, M., Görlich, A., Michailova, P., & Pyza, E. (2005). Heavy metal accumulation, heat shock protein expression and cytogenetic changess in Tetrix tenuicornis (L.) (Tetrigidae, Orthoptera) from polluted areas. Environmental Pollution, 133, 373–381. doi:10.1016/j.envpol.2004.05.013.

    Article  CAS  Google Scholar 

  • WHO (World Health Organisation) (1992). International program on chemical safety. Environmental Health Criteria, 6, 325–329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imed Messaoudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annabi, A., Messaoudi, I., Kerkeni, A. et al. Comparative study of the sensitivity to cadmium of two populations of Gambusia affinis from two different sites. Environ Monit Assess 155, 459–465 (2009). https://doi.org/10.1007/s10661-008-0448-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0448-6

Keywords

Navigation