Advertisement

Environmental Monitoring and Assessment

, Volume 155, Issue 1–4, pp 459–465 | Cite as

Comparative study of the sensitivity to cadmium of two populations of Gambusia affinis from two different sites

  • Ali Annabi
  • Imed Messaoudi
  • Abdelhamid Kerkeni
  • Khaled Said
Article

Abstract

This study aims to demonstrate the influence of animals’ origin on their sensitivity toward heavy metals. For this purpose, we compared LC50 of cadmium in two populations of Gambusia affinis captured in two geographically isolated environments in the east of Tunisia; Oued El Gsil in the city of Monastir (S2) and Oued Chenini in the region of Gabes (S1). Although physicochemical parameters of the water (pH, dissolved oxygen and salinity) are similar in the two studied sites, cadmium concentrations in water, sediments and fish tissues from S1 are significantly higher (P < 0.01) than those from S2, 48-h and 96-h LC50 of the (S1) population are significantly higher than those from S2. In the same way, the offspring of the polluted site (S1) population exhibit 48-h and 96-h LC50 values much higher than those of the reference site (S2) population. These results show that the population of the Gabes region is more resistant to cadmium than that of the Monastir region and that this resistance could have a genetic basis. These results indicate the influence of the origin of animals that has to be taken into account not only in laboratory toxicity tests, but also in field ecotoxicological studies.

Keywords

Sensitivity Gambusia affinis Cadmium LC50 Tunisia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, S., Sadinski, W., Shugart, L., Brussard, P., Depledge, M., Ford, T., et al. (1994). Genetic and molecular ecotoxicology: a research framework. Environmental Health Perspectives, 102, 3–8.Google Scholar
  2. Andreasen, J. k. (1985). Insecticide resistance in mosquitofish of the lower Rio Grande Valley of Texas an ecological hazard? Archives of Environmental Contamination and Toxicology, 14, 573–577. doi:10.1007/BF01055387.CrossRefGoogle Scholar
  3. Antonovics, J., Bradshaw, A. D., & Turner, T. (1971). Heavy metal tolerance in plants. Adv Ecology Ressources, 7, 1–85.CrossRefGoogle Scholar
  4. Bervoets, L., & Blust, R. (2003). Metal concentrations in water, sediment and gudgeon (Gobio gobio) from a pollution gradient: relationship with fish condition factor. Environmental Pollution, 126, 9–19. doi:10.1016/S0269-7491(03)00173-8.CrossRefGoogle Scholar
  5. Byczkowski, J. Z., & Sorenson, J. R. J. (1984). Effects of metal compounds on mitochondrial function: a review. The Science of the Total Environment, 37, 133–162. doi:10.1016/0048-9697(84)90091-3.CrossRefGoogle Scholar
  6. De Nicola, M., Cardellicchio, N., Gambardella, C., Guarino, S. M., & Marra, C. (1993). Effects of cadmium on survival, bioaccumulation, histopathology and PGM polymorphism in the marine Isopod Idotea baltica. In R. Dallinger & P. S. Rainbow (Eds.), Ecotoxicology of Metals in invertebrates (pp. 103–116). Florida: CRC.Google Scholar
  7. Diamond, S. A., Newman, M. C., Mulvey, M., & Guttman, S. I. (1991). Allozyme genotype and time to death of mosquitofish, Gambusia holbrooki, during acute inorganic mercury exposure: a comparison of populations. Aquatic Toxicology (Amsterdam, Netherlands), 21, 119–134. doi:10.1016/0166-445X(91)90010-7.Google Scholar
  8. Dutta, T. K., & Kaviraj, A. (2001). Acute toxicity of cadmium to fish Labeo rohita and copepod Diaptomus forbesi pre-exposed to CaO and KMnO4. Chemosphere, 42, 955–958. doi:10.1016/S0045-6535(00)00166-1.CrossRefGoogle Scholar
  9. Eisler, R. (1971). Cadmium poisoning in Fundulus heteroclitus and other marine organisms. Journal of Fish Resources Board Canada, 28, 1225–1234.Google Scholar
  10. Fargasova, A. (1998). Comparative acute toxicity of Cu, Mn, Mo, Ni, and V to Chironomus plumosus larvae and Tubilfex worms. Biologia, 53, 315–319.Google Scholar
  11. Finney, D. J. (1971). Probit analysis (p. 337). London: Cambrige University Press.Google Scholar
  12. Gillespie, R. B., & Guttman, S. I. (1993). Correlations between water quality and frequencies of allozyme genotypes in spotfin shiner (Notropis spilopteris) populations. Environmental Pollution, 81, 147–150. doi:10.1016/0269-7491(93)90079-4.CrossRefGoogle Scholar
  13. Groenendijk, D., van Opzeeland, B., Pires, L. M. D., & Postma, J. F. (1999). Fluctuating life-history parameters indicating temporal variability in metal adaptation in riverine chironomiuds. Archives of Environmental Contamination and Toxicology, 37, 175–181. doi:10.1007/s002449900503.CrossRefGoogle Scholar
  14. Hamza-Chaffai, A., Cossin, R. P., Amiard-Triquet, C., & El Abed, A. (1995). Physico-chemical forms of storage of metals (Cd, Cu, and Zn) and metallothionein-like proteins in gills and liver of marine fish from the Tunisian coast: ecotoxicological consequences. Comparative Biochemistry and Physiology, 102(C, no 2), 329–341.Google Scholar
  15. Hawkins, W. E., Tate, L. G., & Sarphie, T. G. (1980). Acute effects of cadmium on the spot, Leiostomus xanthurus (teleost): tissue distribution and renal ultastructure. Journal of Toxicology and Environmental Health, 6, 283–295.CrossRefGoogle Scholar
  16. Heagler, M. G., Newman, M. C., Mulvey, M., & Dixon, P. M. (1993). Allozyme genotype in mosquitofish Gambusia holbrooki, during mercury exposure: temporal stability, concentration effects and field verification. Environmental Toxicology and Chemistry, 12, 385–395. doi:10.1897/1552-8618(1993)12[385:AGIMGH]2.0.CO;2.CrossRefGoogle Scholar
  17. Hiatt, V., & Huff, E. (1975). The environmental impact of cadmium: an overview. The International Journal of Environmental Studies, 7, 277–285. doi:10.1080/00207237508709704.CrossRefGoogle Scholar
  18. Hoeskstra, J. A., Vaal, M. A., Notenboom, J., & Sloof, W. (1994). Variation in the sensitivity of aquatic species to toxicants. Bulletin of Environmental Contamination and Toxicology, 53, 98–105.Google Scholar
  19. Hopps, H. C. (1974). Overview. In Geochestry and Environment (Vol. 1, pp. 3–21). Washington, DC: American Academie of Science.Google Scholar
  20. Hu, Z. A., & Wang, H. X. (2001). Molecular mechanism of stress adaptation in plant natural populations. Acta Botanica Sinica, 43, 111–118.Google Scholar
  21. Ivorra, N., Barranguet, C., Jonker, M., Kraak, M. H. S., & Admiraal, W. (2002). Metal-induced tolerance in the freshwater microbentic diatom Gomphonema parvulum. Environmental Pollution, 116, 147–157. doi:10.1016/S0269-7491(01)00152-X.CrossRefGoogle Scholar
  22. Kaviraj, A., & Das, B. K. (1994). Cadmium induced changes in fish and other aquatic organisms. Journal of Natural Conservation, 6, 105–122.Google Scholar
  23. Keklak, M. M., Newman, M. C., & Mulvey, M. (1994). Enhanced uranium tolerance of an exposed population of the eastern mosquitofish Gambusia holbrooki. Archives of Environmental Contamination and Toxicology, 27, 20–24. doi:10.1007/BF00203882.CrossRefGoogle Scholar
  24. Klerks, P. L., & Levinton, J. S. (1989). Rapid evolution of metal resistance in benthic oligochaete inhabiting a metal-polluted site. The Biological Bulletin, 176, 135–141. doi:10.2307/1541580.CrossRefGoogle Scholar
  25. Klerks, P. L., & Weis, J. S. (1987). Genetic adaptation to heavy metals in aquatic organism a review. Environmental Pollution, 45, 173–205. doi:10.1016/0269-7491(87)90057-1.CrossRefGoogle Scholar
  26. Kopp, R. L., Guttman, S. I., & Wissing, T. E. (1992). Genetic indicators of environmental stress in central mudminnow (Umbra limi) populations exposed to acid deposition in the Adirondack mountains. Environmental Toxicology and Chemistry, 11, 665–676. doi:10.1897/1552-8618(1992)11[665:GIOESI]2.0.CO;2.CrossRefGoogle Scholar
  27. Miliou, H., Zaboukas, N., & Moraitou Apostolopoulu, M. (1998). Biochemical composition, growth, and survival of the Guppy, Poecilia reticulata, during chronic sublethal exposure to cadmium. Environmental Contamination and Toxicology, 35, 58–63. doi:10.1007/s002449900349.CrossRefGoogle Scholar
  28. Nacci, D., Covio, L., Champhri, D., Jayaramam, S., Micknney, R., Gleason, T. R., et al. (1999). Adaptations wild populations of the estuarine fish Fundulus heteroclitus to persistent environmental contaminants. Marine Biology (Berlin), 134, 9–17. doi:10.1007/s002270050520.CrossRefGoogle Scholar
  29. Page, A. L., Binghmam, F. T., & Chang, A. C. (1981). Effect of heavy metal pollution on plants. Applied Science, London (N.W. Lepp.Edt.), 1, 77–109.Google Scholar
  30. Paternello, T., Guinez, K., & Battaglia, B. (1991). Effects of pollution on heterozygosity in the barnacle Balanus amphitrite (Cirripedia: Thoracica). Marine Ecology Progress Series, 70, 237–243. doi:10.3354/meps070237.CrossRefGoogle Scholar
  31. Reinecke, S. A., Prinsloo, M. W., & Reinecke, A. J. (1999). Resistance of Eisenia fetida (Oligochaeta) to cadmium after long-term exposure. Ecotoxicology and Environmental Safety, 42, 75–80. doi:10.1006/eesa.1998.1731.CrossRefGoogle Scholar
  32. Reznick, D. N., & Ghalambor, C. K. (2001). The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptative evolution. Genetica, 112, 183–198. doi:10.1023/A:1013352109042.CrossRefGoogle Scholar
  33. Ryan, J. A., Pahren, H. R., & Lucas, J. B. (1982). Controlling cadmium in the human health chain: Review and rationale based on health effects. Environmental Research, 28, 251–302. doi:10.1016/0013-9351(82)90128-1.CrossRefGoogle Scholar
  34. Schlueter, M. A., Guttman, S. I., Oris, J. T., & Bailer, A. J. (1995). Survival of copper-exposed juvenile fathead minnows (Pimephales promelas) differs among allozyme genotypes. Environmental Toxicology and Chemistry, 10, 1727–1734. doi:10.1897/1552-8618(1995)14[1727:SOCJFM]2.0.CO;2.CrossRefGoogle Scholar
  35. Serbaji, M. M. (2000). Utilisation d’un SIG multi-sources pour la compréhension et la gestion intégrée de l’écosystème côtier de la région de Sfax (Tunisie). Thèse Doctorat Géologie Université Tunis II (p. 226).Google Scholar
  36. Sokolova, I. M. (2004). Cadmium effects on mitochondrial function are enhanced by elevated temperatures in marine poikilotherm, Crassostrea virginica Gmelin (Bivalvia: Ostreidae). The Journal of Experimental Biology, 207, 2639–2648. doi:10.1242/jeb.01054.CrossRefGoogle Scholar
  37. Sokolova, I. M., Evans, S., & Hughes, F. M. (2004). Cadmium-induced apoptosis in oyster hemocytes involves disturbance of cellular energy balance but no mitochondrial permeability transition. The Journal of Experimental Biology, 207, 3369–3380. doi:10.1242/jeb.01152.CrossRefGoogle Scholar
  38. Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine, 18, 321–336. doi:10.1016/0891-5849(94)00159-H.CrossRefGoogle Scholar
  39. Tatara, C. P., Newman, M. C., & Mulvey, M. (2001). Effect of mercury and Gpi-2 genotype on standard metabolic rate of eastern mosquitofish (Gambusia holbrooki). Environmental Toxicology and Chemistry, 20, 782–786. doi:10.1897/1551-5028(2001)020<0782:EOMAGG>2.0.CO;2.CrossRefGoogle Scholar
  40. Viarengo, A. (1994). Heavy metal cytotoxicity in marine organisms: effects on Ca2 +  homeostasis and possible alteration of signal transduction pathway. Advance Comparative Environmental Physiology, 20, 85–109.Google Scholar
  41. Warchalowska-Sliwa, E., Niklinska, M., Görlich, A., Michailova, P., & Pyza, E. (2005). Heavy metal accumulation, heat shock protein expression and cytogenetic changess in Tetrix tenuicornis (L.) (Tetrigidae, Orthoptera) from polluted areas. Environmental Pollution, 133, 373–381. doi:10.1016/j.envpol.2004.05.013.CrossRefGoogle Scholar
  42. WHO (World Health Organisation) (1992). International program on chemical safety. Environmental Health Criteria, 6, 325–329.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Ali Annabi
    • 1
  • Imed Messaoudi
    • 1
  • Abdelhamid Kerkeni
    • 2
  • Khaled Said
    • 1
  1. 1.UR 09/30: Génétique, Biodiversité et Valorisation des BioressourcesInstitute of BiotechnologyMonastirTunisia
  2. 2.Eléments trace, radicaux libres, systèmes antioxydants et pathologies humaines et environnementFaculté de MedecineMonastirTunisia

Personalised recommendations