Advertisement

Environmental Monitoring and Assessment

, Volume 154, Issue 1–4, pp 349–359 | Cite as

Presence of steroid hormones and antibiotics in surface water of agricultural, suburban and mixed-use areas

  • Magdalena Velicu
  • Rominder Suri
Article

Abstract

The occurrence of pharmaceutically active chemicals (PACs) in the natural aquatic environment is recognized as an emerging issue due to the potential adverse effects these compounds pose to aquatic life and humans. This study presents the monitoring of two major categories of PACs in surface water: steroid hormones and antibiotics. Surface water samples were collected in the fall season from 21 locations in suburban (4), agricultural (5) and mixed (12) use suburban and agricultural areas. The water samples collected were analyzed using GC/MS for aqueous concentration of eleven steroid hormones: six natural (17α-estradiol, 17β-estradiol, estrone, estriol, 17α-dihydroequilin, progesterone) and five synthetic (gestodene, norgestrel, levonorgestrel, medrogestone, trimegestone). In addition, 12 antibiotics (oxytetracycline, chlorotetracycline, tetracycline, sulfamethoxazole, sulfamethazine, trimethoprim, lincomycin, norfloxacin, ofloxacin, roxithromycin, erythromycin, tylosin tartrate) were analyzed using LC/MS. Steroid hormones detected in surface water were: 17α-estradiol, 17β-estradiol, 17α-dihydroequilin, estriol, estrone, progesterone and trimegestone. Estrone had the highest detection frequency of >90% with concentrations ranging from 0.6 to 2.6 ng/l. The second most frequently detected estrogen was estriol (>80%) with concentrations ranging from 0.8 to 19 ng/l. The detection frequency varied at different sampling locations. No antibiotics were detected in the 21 streams sampled. This study aims to give a better understanding on the presence, fate and transport of PACs derived from humans and animals.

Keywords

Endocrine disrupting compounds Environmental estrogens Antibiotics Emerging contaminants Pharmaceutical and personal care products EDCs Surface water PPCPs PACs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ADC (2004). The map people. (16th ed.). Chester Country, PA: The Langenscheidt Publishing Group, Alexandria Drafting Company.Google Scholar
  2. Amabile-Cuevas, C. F. (2003). New antibiotics and new resistance. American Scientist, 91, 138–149. doi:10.1511/2003.2.138.CrossRefGoogle Scholar
  3. Atkinson, S., & Tarrant, A. M. (2003). Estrogens from sewage in costal marine environments. Environmental Health Perspectives, 111, 531–535.Google Scholar
  4. Baronti, C., Curini, R., D’Ascenzo, G., Di Corcia, A., Gentili, A., & Samperi, R. (2000). Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environmental Science & Technology, 34(24), 5059–5066. doi:10.1021/es001359q.CrossRefGoogle Scholar
  5. Belfroid, A. C., Van der Horst, A., Vethaak, A. D., Schafer, A. J., Rijs, G. B. J., Wegner, J., et al. (1999). Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in the Netherlands. The Science of the Total Environment, 225, 101–108. doi:10.1016/S0048-9697(98)00336-2.CrossRefGoogle Scholar
  6. Boxall, A. B. A., Kolpin, D. W., Halling-Sorensen, B., & Tolls, J. (2003). Are veterinary medicines causing environmental risks? Environmental Science & Technology, 37, 286A–294A.CrossRefGoogle Scholar
  7. Britt, E. E. (2002). Analyzing the ignored environmental contaminants. Environmental Science and Technology, 36(7), 140–145.CrossRefGoogle Scholar
  8. Cargouet, M., Perdiz, D., Mouatassim-Souali, A., Tamisier-Karolak, S., & Levi, Y. (2004). Assessment of river contamination by estrogenic compounds in Paris area (France). Science of the Total Environment, 25, 55–66. doi:10.1016/j.scitotenv.2003.10.035.CrossRefGoogle Scholar
  9. Chimchirian, R., Suri, R., & Fu, H. (2007). Free synthetic and natural estrogen hormones in influent and effluent of three municipal wastewater treatment plants. Water Environment Research, 79(9), 969–974. doi:10.2175/106143007X175843.CrossRefGoogle Scholar
  10. Chimchirian, R., Devaiah, U., & Suri, R. (2005). Presence of low level free steroid estrogens in the surface water. Paper presented at the International Conference on Energy, Environment and Disasters (INCEED), Charlotte, NC.Google Scholar
  11. Desbrow, C., Routledge, E. J., Brighty, G. C., Sumpter, J. P., & Waldock, M. (1998). Identification of estrogenic chemicals in STW effluent 1. Chemical fractionation and in vitro biological screening. Environmental Science & Technology, 32(11), 1549–1558. doi:10.1021/es9707973.CrossRefGoogle Scholar
  12. Gross-Sorokin, M. Y., Roast, S. D., & Brighty, G. C. (2006). Assessment of feminization of male fish in English rivers by the Environment Agency of England and Wales. Environmental Health Perspectives, 114, 147–151.CrossRefGoogle Scholar
  13. Hanselman, T. A., Graetz, D. A., & Wilkie, A. C. (2003). Manure-borne estrogens as potential environmental contaminants: A review. Environmental Science & Technology, 24, 5471–5478. doi:10.1021/es034410+.CrossRefGoogle Scholar
  14. Hirsch, R., Ternes, T. A., Haberer, K., Mehlich, A., Ballvanz, F., & Kratz, K. (1998). Determination of antibiotics in different water compartments via liquid chromatography–electrospray tandem mass spectrometry. Journal of Chromatography A, 185, 213–223. doi:10.1016/S0021-9673(98)00335-5.CrossRefGoogle Scholar
  15. Holbrook, R. D., Novak, J. T., Grizzard, T. J., & Love, N. G. (2002). Estrogen receptor agonist fate during wastewater and biosolids treatment processes: A mass balance analysis. Environmental Science & Technology, 36, 4533–4539. doi:10.1021/es020577b.CrossRefGoogle Scholar
  16. Isobe, T., Shiraishi, H., Yasuda, M., Shinoda, A., Suzuki, H., & Morita, M. (2003). Determination of estrogens and their conjugates in water using solid-phase extraction followed by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 984, 195–202. doi:10.1016/S0021-9673(02)01851-4.CrossRefGoogle Scholar
  17. Jin, L., Amaya-Mazo, X., Apel, M. E., Sankisa, S. S., Johnson, E., Zbyszynska, M. A., et al. (2007). Ca2 + and Mg2 + bind tetracycline with distinct stoichiometries and linked deprotonation. Biophysical Chemistry, 128, 185–196. doi:10.1016/j.bpc.2007.04.005.CrossRefGoogle Scholar
  18. Jobling, S., Nolan, M., Tyler, C. R., Brighty, G., & Sumpter, J. P. (1998). Widespread sexual disruption in wild fish. Environmental Science & Technology, 32(17), 2498–2506. doi:10.1021/es9710870.CrossRefGoogle Scholar
  19. Jurgens, M. D., Smith, J. J. L., Hetheridge, M., Holthaus, K. I. E., Johnson, A. C., & Williams, K. J. (2002). The potential for estradiol and ethinylestradiol degradation in English rivers. Environmental Toxicology and Chemistry, 21, 480–488. doi:10.1897/1551-5028(2002)021<0480:TPFEAE>2.0.CO;2.CrossRefGoogle Scholar
  20. Kolodziej, E. P., Harter, T., & Sedlak, D. L. (2004). Dairy wastewater, aquaculture, and spawning fish as sources of steroid hormones in the aquatic environment. Environmental Science & Technology, 38(23), 6377–6384. doi:10.1021/es049585d.CrossRefGoogle Scholar
  21. Kolpin, D. W., Furlong, E. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environmental Science & Technology, 36, 1202–1211. doi:10.1021/es011055j.CrossRefGoogle Scholar
  22. Lai, K. M., Scrimshaw, M. D., & Lester, J. N. (2001). Prediction of the bioaccumulation factors and body burden of natural and synthetic estrogens in aquatic organisms in the river systems. The Science of the Total Environment, 289, 159–168. doi:10.1016/S0048-9697(01)01036-1.CrossRefGoogle Scholar
  23. Lindsey, M. E., Meyer, M., & Thurman, E. M. (2001). Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Analytical Chemistry, 73, 4640–4646. doi:10.1021/ac010514w.CrossRefGoogle Scholar
  24. Reif, A. G. (2004). Open-File Report 03-499, U.S. Geological Survey Assessment of Water Chemistry, Habitat, and Benthic Macro invertebrates at Selected Stream-Quality Monitoring Sites in Chester County, Pennsylvania, 1998–2000, U.S. Department of the Interior, U.S. Geological Survey.Google Scholar
  25. Rodgers-Gray, T. P., Jobling, S., Morris, S., Kelly, C., Kirby, S., Janbakhsh, A., et al. (2000). Long-term temporal changes in the estrogenic composition of treated sewage effluent and its biological effects on fish. Environmental Science & Technology, 34, 1521–1528. doi:10.1021/es991059c.CrossRefGoogle Scholar
  26. Routledge, E. J., Sheahan, D., Desbrow, C., Brighty, G. C., Waldock, M., & Sumter, J. P. (1998). Identification of estrogenic chemicals in STW. 2. In vivo responses in trout and roach. Environmental Science & Technology, 32(11), 1559–1565. doi:10.1021/es970796a.CrossRefGoogle Scholar
  27. Sacher, F., Langea, F. T., Braucha, H. J., & Blankenhornb, I. (2001). Pharmaceuticals in groundwaters analytical methods and results of a monitoring program in Baden-Württemberg, Germany. Journal of Chromatography A, 938, 199–210. doi:10.1016/S0021-9673(01)01266-3.CrossRefGoogle Scholar
  28. Samir, K. K., Xie, B., Thompson, M. L., Sung, S., Ong, S. K. & Hans Van Leeuwen, J. (2006). Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems. Environmental Science & Technology, 40(21), 6537–6546. doi:10.1021/es0607739.CrossRefGoogle Scholar
  29. Sharpe, R. M., & Skakkebaek, N. E. (1993). Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet, 341(8857), 1392–1396. doi:10.1016/0140-6736(93)90953-E.CrossRefGoogle Scholar
  30. Shinwoo, Y., Jongmun, C., & Kenneth, C. (2005). Simultaneous extraction and analysis of 11 tetracycline and sulfonamide antibiotics in influent and effluent domestic wastewater by solid-phase extraction and liquid chromatography–electrospray ionization tandem mass spectrometry. Journal of Chromatography. A, 1097, 40–53. doi:10.1016/j.chroma.2005.08.027.CrossRefGoogle Scholar
  31. Shore, S., Laurence, S., & Shemesh, M. (2003). Naturally produced steroid hormones and their release into the environment. Pure and Applied Chemistry, 75(11–12), 1859–1871. doi:10.1351/pac200375111859.CrossRefGoogle Scholar
  32. Snyder, S. A., Keith, T. L., Verbrugge, D. A., Erin, M. S., Gross, T. S., Kurunthachalam, K., et al. (1999). Analytical method for detection of selected estrogenic compounds in aqueous mixtures. Environmental Science & Technology, 33, 2814–2820. doi:10.1021/es981294f.CrossRefGoogle Scholar
  33. Sungpyokim, S., Eichhorn, P., Jensen, J., Weber, A. S., & Aga, D. S. (2005). Removal of antibiotics in wastewater: Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process. Environmental Science & Technology, 39, 5816–5823. doi:10.1021/es050006u.CrossRefGoogle Scholar
  34. Swartz, C. H., Reddy, S., Yin, H., Barber, L. B., Brownawell, B. J., & Rudel, R. A. (2006). Steroid estrogens, nonylphenol etoxylate metabolites, and other wastewater contaminants in groundwater affected by a residential septic system on Cape Cod, MA. Environmental Science & Technology, 40, 4894–4902. doi:10.1021/es052595+.CrossRefGoogle Scholar
  35. Swinker, A. M., Tozer, P. R., Shields, M. L., & Landis, E. R. (2003). Pennsylvania’s Equine industry Inventory, Basic Economic and Demographic Characteristics. Retrieved from http://www.agriculture.state.pa.us/agriculture/lib/agriculture/horseracingfiles/equinesurveyresults-academic.pdf.
  36. Wuest, P. J., Fahy, H. K., & Fahy, J. (1994). Use of spent mushroom substrate (SMS) for corn (maize) production and its effect on surface water quality. In Proceedings of the Spent Mushroom Substrate Symposium, 11–14 March. Philadelphia, PA: American Mushroom Institute.Google Scholar
  37. Xaio-Yao, X., McCalley, D. V., & McEvoy, J. (2001). Analysis of estrogens in river water and effluents using solid-phase-extraction and gas chromatography–negative chemical ionization mass spectrometry of the pentafluorobenzoyl derivatives. Journal of Chromatography A, 923, 195–204. doi:10.1016/S0021-9673(01)00955-4.CrossRefGoogle Scholar
  38. Young, W. F., Whitehouse, P., Johnson, I., & Sorokin, N. (2004). Proposed predicted-no-effect-concentrations (PNECs) for natural and synthetic steroid oestrogens in surface waters. EPA, R&D Technical Report P2-T04/1. Retrieved from http://publications.environment-agency.gov.uk/pdf/SP2-T04-TR1-e-p.pdf?lang=_e.

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Villanova Center for the EnvironmentVillanova UniversityVillanovaUSA

Personalised recommendations