Environmental Monitoring and Assessment

, Volume 153, Issue 1–4, pp 427–434 | Cite as

Staggered nested designs to assess scales of variability: the advantages of a spatially explicit analysis

  • Russell G. Cole


A staggered nested sampling design was used to identify spatial scales of variation in the abundance of an intertidal clam Austrovenus stutchburyi. A georeferenced sampling design permitted assessment of abundance at spatial lags between 0.1 and 87 m. An analysis of variance approach produced imprecise estimates of variability, whereas spatially explicit analyses improved the resolution greatly. A geostatistical model identified the spatial scale of residual variance as 13 m and that of the asymptote of spatial dependence as 17 m. It also permitted mapping of bivalve abundance. Staggered nested designs are highly efficient for comparing hierarchies of scale, but in this study analysis of detailed positional information was required to tease out useful spatial information.


Clam Geostatistics Scale Spatial pattern Staggered nested design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azovsky, A. I., Chertoprood, M. V., Kucheruk, N. V., Rybnikov, P. V. & Sapozhnikov, F. V. (2000). Fractal properties of spatial distribution of intertidal benthic communities. Marine Biology, 136, 581–590.CrossRefGoogle Scholar
  2. Bainbridge, T. R. (1965). Staggered nested designs for estimating variance components. Industrial Quality Control, 22, 12–20.Google Scholar
  3. Cole, R. G. (2001). Staggered nested designs to estimate hierarchical levels of variability. New Zealand Journal of Marine and Freshwater Research, 35(5), 891–896.Google Scholar
  4. Cummings, V. J., Pridmore, R. D., Thrush, S. F. & Hewitt, J. E. (1995). Post-settlement movement by intertidal benthic macroinvertebrates: Do common New Zealand species drift in the water column? New Zealand Journal of Marine and Freshwater Research, 29, 59–67.CrossRefGoogle Scholar
  5. Dobbie, N. J. (1996). Benthic fauna of Pine Harbour Marina. MSc thesis, University of Waikato, New Zealand.Google Scholar
  6. Graham, M. H. & Edwards, M. S. (2001). Statistical significance versus fit: Estimating the importance of individual factors in ecological analysis of variance. Oikos, 93, 505–513.CrossRefGoogle Scholar
  7. Hewitt, J. E., Thrush, S. F., Dayton, P. K. & Bonsdorff, E. (2007). The effect of spatial and temporal heterogeneity on the design and analysis of empirical studies of scale-dependent systems. The American Naturalist, 169, 398–408.CrossRefGoogle Scholar
  8. Khattree, R. & Naik, D. N. (1995). Statistical tests for random effects in staggered nested designs. Journal of Applied Statistics, 22, 495–505.CrossRefGoogle Scholar
  9. Khattree, R., Naik, D. N. & Mason, R. L. (1997). Estimation of variance components in staggered nested designs. Journal of Applied Statistics, 24, 395–408.CrossRefGoogle Scholar
  10. Khuri, A. I. & Sahai, H. (1985). Variance components analysis: A selective literature survey. International Statistical Review, 53, 279–300.CrossRefGoogle Scholar
  11. Lapointe, L. & Bourget, E. (1999). Influence of substratum heterogeneity scales and complexity on a temperate epibenthic marine community. Marine Ecology Progress Series, 189, 159–170.CrossRefGoogle Scholar
  12. Legendre, L. & Demers, S. (1984). Towards dynamic biological oceanography and limnology. Canadian Journal of Fisheries and Aquatic Sciences, 41, 2–19.CrossRefGoogle Scholar
  13. Mac Nally, R. & Quinn, G. P. (1998). Symposium introduction: The importance of scale in ecology. Australian Journal of Ecology, 23, 1–7.CrossRefGoogle Scholar
  14. McArdle, B. H. & Pawley, M. D. M. (1994). Cost-benefit analysis in the design of biological monitoring programmes: Is it worth the effort? In D. J. Fletcher & B. F. J. Manly (Eds.), Statistics in ecology and environmental monitoring (pp. 239–253). Dunedin: University of Otago Press.Google Scholar
  15. Miller, J., Franklin, J. & Aspinall, R. (2007). Incorporating spatial dependence in predictive vegetation models. Ecological Modelling, 202, 225–242.CrossRefGoogle Scholar
  16. Muller, W. G. & Zimmerman, D. L. (1999). Optimal designs for variogram estimation. Environmetrics, 10, 23–37.CrossRefGoogle Scholar
  17. Naik, D. N., & Khattree, R. (1998). A computer program to estimate variance components in staggered nested designs. Journal of Quality Technology, 30, 292–297. Scholar
  18. Nelson, L. S. (1983). Variance estimation using staggered, nested designs. Journal of Quality Technology, 15, 195–198.Google Scholar
  19. Ojima, Y. (1998). General formulae for expectations, variances and covariances of the mean squares for staggered nested designs. Journal of Applied Statistics, 25, 785–799.CrossRefGoogle Scholar
  20. Pettit, A. N. & McBratney, A. B. (1993). Sampling designs for estimating spatial variance components. Applied Statistics, 42, 185–209.CrossRefGoogle Scholar
  21. Robertson, G. P. (1998). GS+: Geostatistics for the environmental sciences. Plainwell, Michigan USA: Gamma Design Software.Google Scholar
  22. Rossi, R. E., Mulla, D. J., Journel, A. G. & Franz, E. H. (1992). Geostatistical tools for modeling and interpreting spatial dependence. Ecological Monographs, 62, 277–314.CrossRefGoogle Scholar
  23. Thrush, S. F. (1999). Complex role of predators in structuring soft-sediment macrobenthic communities: Implications of changes in spatial scale for experimental studies. Australian Journal of Ecology, 24, 344–354.CrossRefGoogle Scholar
  24. Underwood, A. J. & Chapman, M. G. (1998). A method for analysing spatial scales of variation in composition of assemblages. Oecologia, 117, 570–578.CrossRefGoogle Scholar
  25. Underwood, A. J. & Denley, E. J. (1984). Paradigms, explanations and generalizations in models for the structure of intertidal communities on rocky shores. In D. R. Strong, D. Simberloff, L. G. Abele & A. B. Thistle (Eds.), Ecological communities: Conceptual issues and the evidence (pp. 151–180). New Jersey, USA: Princeton University Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.National Institute of Water and Atmospheric ResearchNelsonNew Zealand

Personalised recommendations