Advertisement

Hyperaccumulative property comparison of 24 weed species to heavy metals using a pot culture experiment

  • Shuhe Wei
  • Qixing Zhou
  • Hong Xiao
  • Chuanjie Yang
  • Yahu Hu
  • Liping Ren
Article

Abstract

The screening of hyperaccumulators is still very much needed for phytoremediation. With properties such as strong tolerance to adverse environment, fast growing and highly reproductive rate, weed species may be an ideal plant for phytoremediation. The objectives of this study were to examine the tolerance and hyperaccumulative characteristics of 24 species in 9 families to Cd, Pb, Cu and Zn by using the outdoor pot-culture experiment. In the screening experiment, only Conyza canadensis and Rorippa globosa displayed Cd-hyperaccumulative characteristics. In a further concentration gradient experiment, C. canadensis was affirmed that it is not a Cd hyperaccumulator. Only R. globosa, indicated all Cd hyperaccumulative characteristics, especially Cd concentration in its stems and leaves were higher than 100 mg/kg, the minimum Cd concentration what a Cd-hyperaccumulator should accumulate. Thus, R. globosa was further validated as a Cd-hyperaccumulator.

Keywords

Contaminated soil Heavy metal Hyperaccumulator Phytoremediation Weed species 

References

  1. Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements — a review of their distribution, ecology and phytochemistry. Biorecovery, 1, 811–826.Google Scholar
  2. Baker, A. J. M., McGrath, S. P., & Sidoli, C. M. D. (1994). The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources, Conservation and Recycling, 11, 41–49.CrossRefGoogle Scholar
  3. Basic, N., Keller, C., Fontanillas, P., Vittoz, P., Besnard, G., & Galland, N. (2006). Cadmium hyperaccumulation and reproductive traits in natural Thlaspi caerulescens populations. Plant Biology, 8, 64–72.CrossRefGoogle Scholar
  4. Brooks, R. R., Chambers, M. F., & Nicks, L. J. (1998). Robinson B.H., Phytomining. Trends in Plant Science, 3, 359–362.CrossRefGoogle Scholar
  5. Brooks, R. R., Lee, J., & Reeves, R. D. (1977). Detection of nickliferous rocks by analysis of herbarium species of indicator plants. Journal of Geochemical Exploration, 7, 49–77.CrossRefGoogle Scholar
  6. Brooks, R. R., & Radford, C. C. (1978). Nickel accumulation by Buropean species of the genus Alyssum. Proceedings of the Royal Society of London, Series B. Biological Sciences, 200, 197–04.Google Scholar
  7. Chaney, R. L., Malik, M., & Li, Y. M. (1997). Phytoremediation of soil metals. Current Opinions in Biotechnology, 8, 279–284.CrossRefGoogle Scholar
  8. Dahmani-Muller, H., Oort, V. F., & Balabane, M. (2001). Metal extraction by Arabidopsis halleri grown on an unpolluted soil amended with various metal-bearing solids: a pot experiment. Environmental Pollution, 114, 77–84.CrossRefGoogle Scholar
  9. Fayiga, A. O., & Ma, L. Q. (2006). Using phosphate rock to immobilize metals in soils and increase arsenic uptake in Pteris vittata. Science of the Total Environment, 359, 17–25.CrossRefGoogle Scholar
  10. Huang, J. W., & Cunningham, S. D. (1996). Lead phytoextraction: species variation in lead uptake and translocation. New Phytologist, 134, 75–84.CrossRefGoogle Scholar
  11. Ince, N. J., Dirilgen, N., Apikyan, I. G., Tezcanli, G., & Ustun, B. (1999). Assessment of toxic interactions of heavy metals in binary mixtures: a statistical approach. Archives of Environmental Contamination and Toxicology, 36, 365–372.CrossRefGoogle Scholar
  12. Kong, L. S. (1982). Accumulation, tolerance and variation of plant to heavy metal. Environmental Science, 1, 65–69.Google Scholar
  13. Kramer, U., Cotter-Howells, J. D., Charnock, J. M., Baker, A. J. M., & Smith, J. A. C. (1996). Free histidine as a metal chelator in plants that accumulate nickel. Nature, 379, 635–638.CrossRefGoogle Scholar
  14. Liu, W., Shu, W. S., & Lan, C. Y. (2004). Viola baoshanensis a plant that hyperaccumulates cadmium. Chinese Science Bulletin, 1, 29–34.Google Scholar
  15. Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., & Cai, Y. (2001). A fern that hyperaccumulates arsenic. Nature, 409, 579.CrossRefGoogle Scholar
  16. Malaisse, B., Gregoire, J., Morrison, R. S., & Reeves, R. D. (1979). Aeolanthus biformifoliu: a hyper accumulator of copper from Zaire. Science, 199, 887–888.CrossRefGoogle Scholar
  17. Ortiz, D. F., Ruscitti, T., McCue, K. F., & Ow, D. W. (1995). Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. Journal of Biological Chemist, 270, 4721–4728.CrossRefGoogle Scholar
  18. Reeves, R. D. (2003). Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant and Soil, 24,9, 57–65.CrossRefGoogle Scholar
  19. Reeves, R. D., & Brooks, R. R. (1983). Hyperaccumulation of lead and zinc by two metallophytes from a mining area of central Europe. Environmental Pollution, 31, 227–287.Google Scholar
  20. Solís-Domínguez, F. A., González-Chávez, M. C., Carrillo-González, R., & Rodríguez-Vázquez, R. (2007). Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system. Journal of Hazardous Materials, 141, 630–636.CrossRefGoogle Scholar
  21. Sun, T. H., Zhou, Q. X., & Li, P. J. (2001). Pollution ecology. Beijing, China: Science Press.Google Scholar
  22. Wei, S. H., & Zhou, Q. X. (2006). Phytoremediation of cadmium-contaminated soils by Rorippa globosa. Environmental Science and Pollution Research, 3, 151–155.CrossRefGoogle Scholar
  23. Wei, S. H., Zhou, Q. X., & Liu, R. (2005). Utilization of weed resource in the remediation of soils contaminated by heavy metals. Journal of Natural Resource, 20, 432–440.Google Scholar
  24. Wenzel, W. W., & Jockwer, F. (1999). Accumulation of heavy metals in plants grown on mineralized soils of the Austrian Alps. Environmental Pollution, 104, 145–155.CrossRefGoogle Scholar
  25. Xia, J. Q. (1996). Detail explanation on the state soil-environment quality standard of China. Beijing, China: Chinese Enviromental Science Press.Google Scholar
  26. Xue, S. G., Chen, Y. X., Reeves, R. D., Baker, A. J. M., Lin, Q., & Fernando, D. R. (2004). Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environmental Pollution, 131, 393–399.CrossRefGoogle Scholar
  27. Yang, X. E., Long, X. X., Ni, W. Z., & Fu, C. X. (2002). Sedum alfreii H: a new Zn hyperaccumulating plant first found in China. Chinese Science Bulletin, 47, 1634–1637.CrossRefGoogle Scholar
  28. Zhang, Z. C., Gao, X., & Qiu, B. S. (2008). Detection of phytochelatins in the hyperaccumulator Sedum alfredii exposed to cadmium and lead. Phytochemistry, 69, 911–918.CrossRefGoogle Scholar
  29. Zhou, Q. X., & Song, Y. F. (2004). Remediation of contaminated soils principles and methods. Beijing, China: Sciences Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Shuhe Wei
    • 1
  • Qixing Zhou
    • 1
    • 2
  • Hong Xiao
    • 1
  • Chuanjie Yang
    • 3
  • Yahu Hu
    • 3
  • Liping Ren
    • 1
  1. 1.Key Laboratory of Terrestrial Ecological Process, Institute of Applied EcologyChinese Academy of SciencesShenyangPeople’s Republic of China
  2. 2.College of Environmental Science and EngineeringNankai UniversityTianjinPeople’s Republic of China
  3. 3.Graduate School of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations