An assessment of trace element contamination in intertidal sediment cores of Sunderban mangrove wetland, India for evaluating sediment quality guidelines

  • Mousumi Chatterjee
  • Serena Massolo
  • Santosh Kumar Sarkar
  • Asok Kumar Bhattacharya
  • Bhaskar Deb Bhattacharya
  • Kamala Kanta Satpathy
  • Soumik Saha


This paper presents a comprehensive account regarding concentration, distribution and possible sources of trace elements (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in 20–30 cm sediment cores (<63 μm particle size) collected at the confluence of the Ganges River and Bay of Bengal (Sunderban wetland, India). This work aims to evaluate the fluvio-marine and geochemical processes influencing the metal distribution. The most interesting features are the downward increase of concentrations of majority of the elements reaching overall maximum values at a depth of 10–15 cm observed in station Lot No.8 located along the main stream of the Ganges estuary as well as an overall elevated concentration of all the elements in the lower littoral zone. The interelemental relationship revealed the identical behaviour of elements during its transport in the estuarine environment. The overall variation in concentration can be attributed to differential discharge of effluents originating from industrial and agricultural as well as from domestic sewage. Arsenic exceeded effects range — low (ER — L) concentrations, implying occasional or frequent adverse biological effects. For Cu, Ni and Cr a smaller proportion of samples had exceeded the ER — L values indicating that the dataset would be suitable for future use in evaluating predictive abilities of SQGs.


Trace elements Intertidal sediments Ecotoxicology Sediment quality guidelines Indian Sunderban 


  1. Abbas, N., & Subramanian, V. (1984). Erosion and sediment transport in the Ganges river basin (India). Journal of Hydrology, 69, 173–182.CrossRefGoogle Scholar
  2. Abu-Hilal, A. H., & Badran, M. M. (1990). Effect of pollution sources on metal concentration in sediment cores from the Gulf of Aqaba (Red Sea). Marine Pollution Bulletin, 21(4), 190–197.CrossRefGoogle Scholar
  3. Adams, W. J., Kimerle, R. A., & Barnett, R. A., Jr. (1992). Sediment quality and aquatic life assessment. Environmental Science and Technology, 26, 1865–1875.Google Scholar
  4. Adriano, D. C. (1986). Trace elements in terrestrial environments. New York: Springer-Verlag.Google Scholar
  5. Alagarsamy, R. (2006). Distribution and seasonal variation of trace metals in surface sediments of the Mandovi estuary, west coast of India. Estuarine, Coastal and Shelf Science, 67, 333–339.CrossRefGoogle Scholar
  6. Alongi, D. M. (1996). The dynamics of benthic nutrient pools and fluxes in tropical mangrove forests. Journal of Marine Research, 54, 123–148.CrossRefGoogle Scholar
  7. Batley, G. E., & Brockbank, C. I. (1990). Impact of ocean disposal of dredged sediments from the RTA Glebe Island bridge site — A coastal sediment survey. CSIRO report, Center for Advanced Analytical Chemistry, Division of Coal and Energy Technology, Report FT/IR 050. Google Scholar
  8. Bhattacharya, A., & Das, G. K. (2002). Dynamic geomorphic environment of Indian Sunderbans. In S. P. Basu (Ed.) Changing environmental scenario of the Indian subcontinent (pp. 284–298). Kolkata: Acb Publication.Google Scholar
  9. Biksham, G., & Subramanian, V. (1988). Elemental composition of Godavari sediments (Central and Southern Indian Subcontinent). Chemical Geology, 70, 275–286.CrossRefGoogle Scholar
  10. Bouillon, S., Mohan, P. C., Sreenivas, N., & Dehairs, F. (2000). Sources of suspended organic matter and selective feeding by ooplankton in an estuarine mangrove ecosystem as traced by stable isotopes. Marine Ecology Progress Series, 208, 70–92.CrossRefGoogle Scholar
  11. Bryan, G. W., & Langston, W. J. (1992). Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environmental Pollution, 76, 89–131.CrossRefGoogle Scholar
  12. Burton Jr., G. A., & Scott, K. J. (1992). Sediment toxicity evaluation, their niche in ecological assessment. Environmental Science and Technology, 26, 2068–2075.CrossRefGoogle Scholar
  13. Caccia, V. G., Millero, F. J., & Palangues, A. (2003). The distribution of trace metals in Florida Bay sediments. Marine Pollution Bulletien, 46, 1420–1433.CrossRefGoogle Scholar
  14. Chatterjee, M., Silva Filho, E. V., Sarkar, S. K., Sella, S. M., Bhattacharya, A., Satpathy, K.K., et al. (2007). Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environment International, 33, 346–356.CrossRefGoogle Scholar
  15. Clark, R. B. (2001). Marine pollution p. 237. Oxford: Oxford University Press.Google Scholar
  16. Clark, C. S., Rampla, K. G., Thuppil, V., Chen, C. K., Clark, R., & Roda, S. (2006). The lead content of currently available new residential paint in several Asian countries. Environmental Research, 102(1), 9–12.CrossRefGoogle Scholar
  17. Cornwell, J. C., Conley, D. J., Owens, M., & Stevenson, J. C. (1996). Sediment chronology of the eutrophication of Chesapeake Bay. Estuaries, 19, 488–499.CrossRefGoogle Scholar
  18. Daoust, R. J., Moore, T. R., Chmura, G. L., & Magenheimer, J. F. (1996). Chemical evidence and anthropogenic influences in a Bay of Fundy salt-marsh. Journal of Coastal Research, 12, 520–532.Google Scholar
  19. Decov, V. M., Subramanian, V., & Van Grieken, R. (1999). Chemical composition of riverine suspended matter and sediments from the Indian sub-continent. In V. Ittekot, V. Subramanian, & S. Annadurai (Eds.) Biogeochemistry of rivers in tropical South and Southeast Asia. Heft 82. SCOPE Sonderband (pp. 99–109). Hamburg: Mitteilugen aus dem Geologisch-Paläontolgischen Institut der Universität.Google Scholar
  20. Dominik, J., & Stanley, D. J. (1993). Boron, beryllium and sulfur in Holocene sediments and peats of the Nile delta, Egypt: their use as indicators of salinity and climate. Chemical Geology, 104, 203–216.CrossRefGoogle Scholar
  21. Dyer, K. R. (1986). Coastal and estuarine sediment dynamics p. 342. New York: John Wiley and Sons.Google Scholar
  22. El-Sayed, M. K. (1982). Effect of sewage effluent on the sediment of Nordasvatnet (a land-locked fjord), Norway. Marine Pollution Bulletin, 13, 85–88.CrossRefGoogle Scholar
  23. Folk, R. L., & Ward, W. C. (1957). Brazos River bar, a study of the significance of grain size parameters. Journal of Sedimentary Petrology, 27, 3–26.Google Scholar
  24. Forstner, U. (1983). Assessment of metal pollution in rivers and estuaries. In I. Thomton (Ed.) Applied environmental geochemistry (pp. 395–423). London: Academic.Google Scholar
  25. Gonneea, M. E., Paytan, A., & Herrera-Silveira, J. A. (2004). Estuarine, Coastal and Shelf Science, 61, 211–227.CrossRefGoogle Scholar
  26. Huntzicker, J. J., Friedlander, S. K., & Davidson, C. I. (1975). Material balance for automobile-emitted lead in Los Angels Basin. Environmental Science & Technology, 9, 448–457.CrossRefGoogle Scholar
  27. Janaki-Raman, D., Jonathan, M. P., Srinivasalu, S., Armstron-Altrin, J. S., Mohan, S. P., & Ram-Mohan, V. (2007). Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India: Application of acid leachable technique. Environmental Pollution, 145(1), 245–257.CrossRefGoogle Scholar
  28. Jennerjahn, T. C., & Ittekkot, V. (2002). Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften, 89, 23–30.CrossRefGoogle Scholar
  29. Jones, B., & Turki, A. (1997). Distribution and speciation of heavy metals in surficial sediments from Tees Estuary, northeast England. Marine Pollution Bulletin, 34, 768–779.CrossRefGoogle Scholar
  30. Jung, H. J., Lee, C. B., Cho, Y. G., & Kong, J.-K. (1996). A mechanism for the enrichment of Cu and depletion of Mn in anoxic marine sediments, Banweol intertidal flat, Korea. Marine Pollution Bulletin, 32(11), 782–787.CrossRefGoogle Scholar
  31. Kotmire, S. Y., & Bhosale, L. J. (1979). Some aspects of chemical composition of mangrove leaves and sediments. Mahasagar, Bulletin of the National Institute of Oceanography, 12, 149–151.Google Scholar
  32. Krumbein, W. C., & Pettijohn, F. J. (1938). Manual of sedimentary petrology p. 549. New York: Plenum.Google Scholar
  33. Lacerda, L. D., & Abrao, J. J. (1984). Heavy metals accumulation by mangrove and salt marsh intertidal sediments. Revista Brasileira de Botanica, 7, 49–52.Google Scholar
  34. Lakshumanan, C. (2001). Modeling organic carbon deposition, degradation and preservation in sediments of Pichavaram mangrove wetlands, southeast coast of India. PhD thesis, Anna University, Chennai, India, 188 pp.Google Scholar
  35. Lee, S. Y. (1995). Mangrove outwelling: a review. Hydrobiologia, 295, 203–212.CrossRefGoogle Scholar
  36. Liao, J. F. (1990). The chemical properties of the mangrove Solonchak in the northeast part of Hainan Island. The Acta Scientiarum Naturalium Universities Sunyatseni (Supplement), 9(4), 67–72.Google Scholar
  37. Marín, V., & Olivares, G. (1999). Estacionalidad de la productividad primaria en bahía Mejillones del Sur (Chile): Una aproximación proceso-functional. Revista Chilena de Historia Natural, 72, 629–641.Google Scholar
  38. Monbet, P. (2006). Mass balance of lead through a small macrotidal estuary: the Morlaix River estuary (Brittany, France). Marine Chemistry, 98, 59–80.CrossRefGoogle Scholar
  39. Muller, G. (1979). Schermetalle in den sedimenten des Rheins-Veran-derungen seitt, 1971. Umschan, 79, 778–783.Google Scholar
  40. Nohara, M., & Yokoto, S. (1978). The geochemistry of trace elements in pelagic sediments from the central Pacific basin. Journal of the Geological Society of Japan, 84(4), 165–175.Google Scholar
  41. Nolting, R. F., Ramkema, A., & Everaarts, J. M. (1999). The geochemistry of Cu, Cd, Zn, Ni and Pb in sediment cores from the continental slope of Banc d’ Arquin (Mauritani). Continental Shelf Research, 19, 665–691.CrossRefGoogle Scholar
  42. Pantalu, V. R. (1966). Contribution to the study of biology and fishery of some estuarine fishes. Ph. D thesis, Calcutta University.Google Scholar
  43. Pereira, M. E., Duarte, A. C., Millward, G. E., Abrue, S. N., & Vale, C. (1998). An estimation of industrial mercury stored in sediments of a combined area of the lagoon of Aveiro (Portugal). Water Science and Technology, 37(6/7), 125–130.CrossRefGoogle Scholar
  44. Periakali, P., Eswaramoorthi, S., Subramanian, S., & Jaisankar, P. (2000). Geochemistry of Pichavaram mangrove sediments, southeast coast of India. Journal of the Geological Society of India, 55, 387–394.Google Scholar
  45. Ramanathan, A. L. (1997). Sediment characteristics of the Pichavaram mangrove environment, southeast coast of India. Indian Journal of Marine Sciences, 26, 319–322.Google Scholar
  46. Ramanathan, A. L., Subramanian, V., Ramesh, R., Chidambaram, S., & James, A. (1997). Environmental geochemistry of the Pichavaram mangrove ecosystem (tropical), southeast coast of India. Environmental Geology, 37(3), 223–233.CrossRefGoogle Scholar
  47. Ramanathan, A. L., Vaithiyanathan, P., Subramanian, V., & Das, B. K. (1993). Geochemistry of the Cauvery estuary, East Coast of India. Estuaries, 16, 459–474.CrossRefGoogle Scholar
  48. Ramesh, R., Subramanian, V., & Van Grieken, R. (1990). Heavy metal distribution in sediments of Krishna river basin, India. Environmental Geology and Water Sciences, 15, 207–216.CrossRefGoogle Scholar
  49. Ray, A. K., Tripathy, S. C., Patra, S., & Sarma, V. V. (2006). Assessment of Godavari estuarine mangrove ecosystem through trace metal studies. Environment International, 32(2), 219–223.CrossRefGoogle Scholar
  50. Rodriguez, L., Marin, V., Farias, M., & Oyarce, E. (1991). Identification of an upwelling zone by remote sensing and in situ measurement. Mejillones del Sur Bay (Antofagasta, Chile). Scientia Marina, 55(3), 467–473.Google Scholar
  51. Ruiz-Fernández, A. C., Páez-Osuna, F., Hillarie-Marcel, C., Soto-Jiménez, M., & Ghaleb, B. (2001). Principal component analysis applied to assessment of metal pollution from urban wastes in the Culiacan River estuary. Bulletin of Environmental Contamination and Toxicology, 67, 741–748.CrossRefGoogle Scholar
  52. Saha, M., Sarkar, S. K., & Bhattacharya, B. (2006). Interspecific variation in heavy metal body concentrations in biota of Sundarban mangrove wetland, northeast India. Environment International, 32, 203–207.CrossRefGoogle Scholar
  53. Salomons, W., & Förstner, U. (1984). Metals in the hydrocycle. Berlin: Springer-Verlag.Google Scholar
  54. Salomons, W., Kerdlik, H., van Pagee, H., Klomp, R., & Schreur, A. (1988). Behaviour and impact assessment of heavy metals in estuary and coastal zone. In U. Seeliger, L. D. de Lacerda, & S. R. Patchineelam (Eds.) Metals in coastal environments of Latin America (pp. 159–198). New York: Springer-Verlag.Google Scholar
  55. Santschi, P. H., Hohener, P., Benoil, G., & Bucholtz-ten Brink, M. (1990). Chemical processes at the sediment–water interface. Marine Chemistry, 30, 269–315.CrossRefGoogle Scholar
  56. Sarangi, R. K., Kathiresan, K., & Subramanian, A. N. (2002). Metal concentrations in five mangrove species of the Bhitarkanika, Orissa, east coast of India. Indian Journal of Marine Sciences, 31(3), 251–253.Google Scholar
  57. Sarkar, S. K., Bhattacharya, B., & Das, R. (2003). Seasonal variations and inherent variability of selenium in marine biota of a tropical wetland ecosystem: Implications for bioindicator species.. Ecological Indicators, 2(4), 367–375.CrossRefGoogle Scholar
  58. Sarkar, S. K., Bhattacharya, B., Debnath, S., Bandopadhaya, G., & Giri, S. (2002). Heavy metals in biota from Sunderban wetland ecosystem, India: implications to monitoring the environmental assessment. Aquatic Ecosystem Health & Management, 5(2), 207–214.Google Scholar
  59. Sarkar, S. K., Franciscovic-Bilinski, S., Bhattacharya, A., Saha, M., & Bilinski, H. (2004). Levels of elements in the surficial estuarine sediments of the Hugli river, northeast India and their environmental implications. Environment International, 30, 1089–1098.CrossRefGoogle Scholar
  60. Sarkar, S. K., Saha, M., Takada, H., Bhattacharya, A., Mishra, P., & Bhattacharya, B. (2007). Water quality management in the lower stretch of the river Ganges, east coast of India: An approach through environmental education. Journal for Cleaner Production, 15(16), 1459–1467.Google Scholar
  61. Shaw, T. J., Gieskes, J. M., & Jahnke, R. A. (1990). Early digenesis in differing depositionsl environments. The response of transition metals in pore water. Geochimica et Cosmochimica Acta, 54, 1233–1246.CrossRefGoogle Scholar
  62. Silva-Filho, E. V., Wasserman, J. C., & Lacerda, L. D. (1998). History of metal inputs recorded on sediment cores from a remote environment. Ciencia y Cultura, 50(5), 374–376.Google Scholar
  63. Stull, J. K., Baird, R. B., & Heesen, T. C. (1986). Marine sediment core profiles of trace constituents offshore of a deep waste-water outfall. Journal of the Water Pollution Control Federation, 58, 985–991.Google Scholar
  64. Subramanian, V., Jha, P. K., & Van Grieken, R. (1988). Heavy metals in the Ganges estuary. Marine Pollution Bulletin, 19, 290–293.CrossRefGoogle Scholar
  65. Szefer, P., Kusak, A., Szefer, K., Glasby, G. P., Jankowska, H., Wolowicz, M., et al. (1998). Evaluation of anthropogenic influx of metallic pollutants into Puck Bay, Southern Baltic. Applied Geochemistry, 13, 293–304.CrossRefGoogle Scholar
  66. Szefer, P., & Skwarzec, B. (1988). Distribution and possible sources of some elements in the sediment cores of the southern Baltic. Marine Chemistry, 23, 109–129.CrossRefGoogle Scholar
  67. Tam, N. F. Y., & Wong, Y. S. (1993). Retention of nutrients and heavy metals in mangrove sediments receiving wastewater of different strengths. Environmental Technology, 14, 719–729.CrossRefGoogle Scholar
  68. Tam, N. F. Y., & Wong, Y. S. (1995). Retention and distribution of heavy metals in mangrove soils receiving wastewater. Environmental Pollution, 94, 283–291.CrossRefGoogle Scholar
  69. Tam, N. F. Y., & Wong, Y. S. (2000). Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environmental Pollution, 110, 195–205.CrossRefGoogle Scholar
  70. Tomlinson, D. C., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Helgoländer Meeresuntersuchungen, 33, 566.CrossRefGoogle Scholar
  71. Turkian, K. K., & Wedephol, K. H. (1961). Distribution of the elements in some major units of the earth crust. Bulletin of the Geological Society of America, 72, 175–192.CrossRefGoogle Scholar
  72. UNEP (United Nations Environment Programme). (1985). GESAMP: Cadmium, lead and tin in marine environment. United Nations Environment Programme: Regional Seas Reports and Studies No. 56, 90 pp.Google Scholar
  73. Valette-Silver, H. J. (1993). The use of sediment cores to reconstruct historical trends in contamination of estuarine and coastal sediments. Estuaries, 16(3B), 577–588.CrossRefGoogle Scholar
  74. Valiela, I., & Cole, M. L. (2002). Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads. Ecosystems, 5, 92–102.CrossRefGoogle Scholar
  75. Volkman, J. K., Rohjans, J., Rullkotter, J., Scholz-Bottcher, B. M., & Liebezeit, G. (2000). Sources and diagenesis of organic matter in tidal flat sediments from the German Wadden Sea. Continental Shelf Research1139–1158.Google Scholar
  76. Waldichuk, M. (1985). Biological availability of metals to marine organisms. Marine Pollution Bulletin, 16, 7–11.CrossRefGoogle Scholar
  77. Walkey, A., & Black, T. A. (1934). An examination of the Dugtijaraff method for determining soil organic matter and proposed modification of the chronic and titration method. Soil Science, 37, 23–38.Google Scholar
  78. Wang, C. K., Chu, K. H., Chen, Q. C., & Ma, X. I. (1995). Environmental research in pearl river and coastal areas. Guangzhou, China: Guangdang Higher Education Press.Google Scholar
  79. Winkles, H. J., Vink, J. P. M., & Beurskens, J. E. M. (1993). Distribution and geochronology of priority pollutants in a large sedimentation area, River Rhine, the Netherlands. Applied Geochemistry, 52, 95–101.CrossRefGoogle Scholar
  80. Yim, M. W., & Tam, N. F. Y. (1999). Effects of waste-water borne heavy metals on mangrove plants and soil microbial activities. Marine Pollution Bulletin, 39, 176–186.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Mousumi Chatterjee
    • 1
  • Serena Massolo
    • 2
  • Santosh Kumar Sarkar
    • 1
  • Asok Kumar Bhattacharya
    • 1
  • Bhaskar Deb Bhattacharya
    • 1
  • Kamala Kanta Satpathy
    • 3
  • Soumik Saha
    • 1
  1. 1.Department of Marine ScienceUniversity of CalcuttaCalcuttaIndia
  2. 2.Analytical and Environmental Chemistry Section, Department of Chemistry and Industrial ChemistryUniversity of GenoaGenoaItaly
  3. 3.Environmental and Industrial Safety Section, Safety GroupIndira Gandhi Center for Atomic ResearchKalpakkamIndia

Personalised recommendations