Advertisement

Environmental Monitoring and Assessment

, Volume 149, Issue 1–4, pp 377–383 | Cite as

Origin and characterisation of microparticles in an ice core from the Central Dronning Maud Land, East Antarctica

  • C. M. Laluraj
  • K. P. Krishnan
  • M. Thamban
  • R. Mohan
  • S. S. Naik
  • W. D’Souza
  • R. Ravindra
  • A. Chaturvedi
Article

Abstract

The scanning electron microscopy–energy dispersive spectroscopic (SEM–EDS) study of selected samples from an ice core collected from Central Dronning Maud Land (CDML), East Antarctica, revealed several microparticles. They are mainly siliceous and carbonaceous particles and have distinct variations in their shape and composition. The morphology and major element chemistry of the particles suggest their origin from either volcanic eruptions or continental dust. The EDS analysis revealed that the volcanic particles are enriched in silica (average SiO2 62%), compared to the continental dust particle (average SiO2 56%). We found that the tephra relating to Agung (1963) and Karkatau (1883) volcanic eruptions, as recorded, in the ice core harbored microbial cells (both coocoid and rods). The occurrence of organic and inorganic particles which bear relation to volcanic eruption and continental dust implies significant environmental changes in the recent past.

Keywords

Tephra Dust Microbe Nanobe Ice core East Antarctica 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benzerara, K., Menguy, N., Guyot, F., Dominici, C., & Gillet, P. (2003). Nanobacteria-like calcite single crystals at the surface of the Tataouine meteorite. Proceedings of the National Academy of Sciences of the United States of America, 100, 7438–7442.CrossRefGoogle Scholar
  2. Bjorck, S., Sandgrepn, P., & Zale, R. (1991). Late Holocene tephro-chronology of the Northern Antarctic Peninsula. Quaternary Research, 36, 322–328.CrossRefGoogle Scholar
  3. Carpenter, E. J., Lin, S., & Capone, D. G. (2000). Bacterial activity in South Pole snow. Applied Environmental Microbiology, 66, 4514–4517.CrossRefGoogle Scholar
  4. Clausen, H. B., Hammer, C. U., Hvidberg, C. S., Dahl-Jensen, D., Steffensen, J. P., Kipfstuhl, J., & Legrand, M. (1997). A comparison of volcanic records over the past 4000 years from the Greenland Ice Core Project and dye 3 Greenland ice cores. Journal of Geophysical Research, 102, 26, 707–723.Google Scholar
  5. Cole-Dai, J., Mosley-Thompson, E., Wight, S. P., & Thompson, L. G. (2000). A 4100-year record of explosive volcanism from an East Antarctica ice core. Journal of Geophysical Research, 105(D19), 24431–24441.CrossRefGoogle Scholar
  6. Davis, S. M., Mortensen, A. K., Baillie, M. G. L., Clausen, H. B., Gronvold, K., Hall, V. A., et al. (2004). Tracing volcanic events in the Greenland ice cores. Pages News, 12, 10–11.Google Scholar
  7. de Angelis, M., Fehrenbach, L., Jehanno, C., & Maurette, M. (1985). Micrometer-sized volcanic glasses in polar ice and snows. Nature, 317, 52–54.CrossRefGoogle Scholar
  8. Deming, J. W., & Baross, J. A. (2000). Survival, dormancy, and nonculturable cells in extreme deep-sea environments. In R. R. Colwell, & D. J. Grimes (Eds.) Nonculturable microorganisms in the environment (pp. 147–197). Washington, DC: ASM.Google Scholar
  9. Folk, R. L., & Lynch, F. L. (1997). The possible role of nano-bacteria (dwarf bacteria) in clay-mineral diagenesis and the importance of careful sample preparation in high-magnification SEM study. Journal of Sedimentary Research, 67, 583–589.Google Scholar
  10. Folk, R. L., & Rasbury, E. T. (2002). Nanometre-scale spheroids on sands, Vulcano, Sicily: possible nannobacterial alteration. Terra Nova, 14, 469–475.CrossRefGoogle Scholar
  11. Fung, I., Meyn, S., Tegen, I., Doney, S. C., John, J., & Bishop, J. K. B. (2000). Iron supply and demand in the upper ocean. Global Biogeochemistry Cycles, 14, 281–296.CrossRefGoogle Scholar
  12. Griffin, D. W., Kellogg, C. A., Garrison, V. H., Lisle, J. T., Borden, T. C., & Shinn, E. A. (2003). Atmospheric microbiology in the northern Caribbean during African dust events. Aerobiology, 19, 143–157.CrossRefGoogle Scholar
  13. Heiken, G. (1972). Morphology and petrography of volcanic ashes. Geological Society of American Bulletin, 83, 1961–1988.CrossRefGoogle Scholar
  14. Laluraj, C. M., Balachandran, K. K., Sabu, P., & Saramma, U. P. (2006). Persistent volcanic signature observed around Barren Island, Andaman Sea, India. Marine Geophysical Researches, 27, 283–288.CrossRefGoogle Scholar
  15. Legrand, M., & Mayewski, P. A. (1997). Glaciochemistry of polar ice cores: A review. Reviews of Geophysics, 35, 219–243.CrossRefGoogle Scholar
  16. Maupetit, F., & Delmas, R. J. (1992). Chemical composition of falling snow at Dumont d’Urville, Antarctica. Journal of Atmospheric Chemistry, 14, 31–42.CrossRefGoogle Scholar
  17. McConnell, J. R., Aristarain, A. J., Banta, J. R., Edwards, R. P., & Simoes, J. C. (2007). 20th Century doubling in dust archived in an Antarctic Peninsula ice core parallels climate change and desertification in South America. Proceedings of National Academic Science, 104(14), 5743–5748.CrossRefGoogle Scholar
  18. McKay, D. S., Gibson Jr., E. K., Thomas-Keprta, K. L., Vali, H., Romanek, C. S., Clemett, S. J., et al. (1996). Search for past life on mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science, 273, 924–930.CrossRefGoogle Scholar
  19. Narcisi, B., Proposito, M., & Frezzotti, M. (2001). Ice record of a 13th century explosive volcanic eruption in northern Victoria Land, East Antarctica. Antarctic Science, 13, 174–181.CrossRefGoogle Scholar
  20. Narcisi, B., Petit, J. R., Delmonte, B., Basile-Doelsch, I., & Maggi, V. (2005). Characteristics and sources of tephra layers in the EPICA-Dome C ice record (East Antarctica): Implications for past atmospheric circulation and ice core stratigraphic correlations. Earth and Planetary Science Letters, 239, 253–265.CrossRefGoogle Scholar
  21. Palais, J. M., Kirchner, S., & Delmas, R. J. (1990). Identification of some global volcanic horizons by major element analysis of fine ash in Antarctic ice. Annals of Glaciology, 14, 216–220.Google Scholar
  22. Palais, J. M., Germani, M. S., & Zielinski, G. A. (1992). Inter-hemispheric transport of volcanic ash from a 1259 A.D. volcanic eruption to the Greenland and Antarctic ice sheets. Geophysical Research Letters, 19(8), 801–804.CrossRefGoogle Scholar
  23. Pattan, J. N., Pearce, N. J. G., Banakar, V. K., & Parthiban, G. (2002). Origin of ash in the Central Indian Ocean Basin and its implication for the volume estimate of the 74,000 year BP youngest Toba eruption. Current Science, 83(7), 889–893.Google Scholar
  24. Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429–436.CrossRefGoogle Scholar
  25. Prospero, J. M., Savoie, D. L., Saltzman, E. S., & Larsen, R. (1991). Impact of oceanic sources of biogenic sulphur on sulphate aerosol concentrations at Mawson, Antarctica. Nature, 350, 221–223.CrossRefGoogle Scholar
  26. Robock, A. (2000). Volcanic eruption and climate. Review of Geophysics, 38, 191–219.CrossRefGoogle Scholar
  27. Rothchild, L. J., & Mancinelli, R. L. (2001). Life in extreme environments. Nature, 409, 1092–1101.CrossRefGoogle Scholar
  28. Saltzman, E. S. (1995). Ocean/atmosphere cycling of dimethylsulfide. In R. J. Delmas (Ed.) Ice-core studies of global biogeochemical cycle. NATO ASI Series. Series I, global environmental change (vol. 30, (pp. 65–89)). Berlin: Springer.Google Scholar
  29. Silva, S. L., & Zielinski, G. A. (1998). Global influence of the AD 1600 eruption of Huaynaputina, Peru. Nature, 393, 455–458.CrossRefGoogle Scholar
  30. Thamban, M., Chaturvedi, A., Rajakumar, A., Naik, S. S., D’Souza, W., Sings, A., et al. (2006). Aerosol perturbation related to volcanic eruptions during the past few centuries as recorded in an ice core from the Central Dronning Maud land, Antarctica. Current Science, 91(9), 1200–1207.Google Scholar
  31. Zielinski, G. A. (2000). Use of paleo-records in determining variability within the volcanism—climate system. Quaternary Science, Review, 19, 417–438.CrossRefGoogle Scholar
  32. Zielinski, G. A., Dibb, J. E., Yang, Q., Mayewski, P. A., Whitlow, S., Twickler, M. S., et al. (1997). Assessment of the record of the 1982 El Chichón eruption as preserved in Greenland snow. Journal of Geophysics Research, 102, 30 031–30 045.Google Scholar
  33. Zielinski, G. A., Mayewski, P. A., Meeker, L. D., Whitlow, S., & Twickler, M. S. (1996). A 110,000-yr record of explosive volcanism from the GISP2 (Greenland) ice core. Quaternary Research, 45(2), 109–118.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • C. M. Laluraj
    • 1
  • K. P. Krishnan
    • 1
  • M. Thamban
    • 1
  • R. Mohan
    • 1
  • S. S. Naik
    • 1
  • W. D’Souza
    • 1
  • R. Ravindra
    • 1
  • A. Chaturvedi
    • 2
  1. 1.National Centre for Antarctic and Ocean ResearchVasco-da-GamaIndia
  2. 2.Geological Survey of India (Antarctica Division)FaridabadIndia

Personalised recommendations