Advertisement

Environmental Monitoring and Assessment

, Volume 148, Issue 1–4, pp 307–314 | Cite as

A test battery approach for ecotoxicological characterization of Mar Piccolo sediments in Taranto (Ionian Sea, Southern Italy)

  • M. Narracci
  • R. A. Cavallo
  • M. I. Acquaviva
  • E. Prato
  • F. Biandolino
Article

Abstract

The eco-toxicological approach is based on the determination of the toxic effects on organisms pertaining to various ecosystems and supplies information about the contaminants mixture bioavailability, in complex matrices as sediments. The use of a single species for a correct evaluation of the toxicity levels can be reductive, concerning the complexity of the ecosystem. In this work we have used species with various evolutionary levels and habitats; in particular, three different organisms: two amphipods species (Corophium insidiosum and Gammarus aequicauda) and one bacterium Vibrio fischeri. We have compared these organisms for the evaluation of sediments toxicity in four sites along the Ionian coast (Taranto, Italy); in particular, three sites in Mar Piccolo and one site in Mar Grande. The toxicity of sediments measured using Vibrio fischeri (Microtox® Solid Phase Test protocol) has been compared with the mortality of the two amphipods. Both in polluted (Mar Piccolo sites) and in non-polluted environments (Mar Grande), the results of the three biological tests carried out converge into the evaluation of sediments quality monitored. In conclusion, these preliminary results show the potential use of Corophium insidiosum and Gammarus aequicauda as test species for a correct evaluation of sediments quality, together with Vibrio fischeri.

Keywords

Ecotoxicology Toxicity test Corophium insidiosum Gammarus aequicauda Vibrio fischeri 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Public Health AssociationAmerican Water Works AssociationWater Pollution Control Federation (1995). Standard methods (18th ed.). Washington, DC: American Public Health Association.Google Scholar
  2. ASTM (1993). Standard guide for conducting 10-d static sediment toxicity tests with marine and estuarine amphipods. In Annual Book of ASTM Standards, Water and Environmental Technology 11.04, E1367-92. ASTM, Philadelphia.Google Scholar
  3. Bombardier, M., & Bermingham, N. (1999). The SED-TOX index: Toxicity-directed management tool to assess and rank sediments based on their hazard—Concept and application. Environmental Toxicology and Chemistry, 18(4), 685–698.CrossRefGoogle Scholar
  4. Castillo, G. C., Vila, I. C., & Neild, E. (2000). Ecotoxicity assessment of metals and waste water using multitrophic assays. Environmental Toxicology, 15, 370–375.CrossRefGoogle Scholar
  5. Cesar, A., Marín-Guirao, L., Vita, R., & Marín, A. (2002). Sensitivity of Mediterranean Amphipods and sea urchins to reference toxicants. Ciencias Marinas, 28(4), 407–417.Google Scholar
  6. Chapman, P. M., Ho, K. T., Munns Jr., W. R., Solomon, K., & Weinstein, M. P. (2002). Issues in sediment toxicity and ecological risk assessment. Marine Pollution Bulletin, 44, 271–278.CrossRefGoogle Scholar
  7. Ciarelli, S. (1994). Guideline for conducting 10-day static sediment toxicity tests using marine or estuarine amphipods. Report from the Tidal Water Division, Middelburg, The Netherlands. Report RIKZ. 94.031.Google Scholar
  8. Costa, F. O., Correia, A. D., & Costa, M. H. (1996). Sensitivity of a marine amphipod to non contaminant variables and to copper in the sediment. Ecologie, 27, 249–276.Google Scholar
  9. Davoren, M., Ni Shuilleabhain, S., O, , ’Halloran, J., Hartl, M. G. J., Sheehan, D., O, , ’Brien, N. M., et al. (2005). A test battery approach for the ecotoxicological evaluation of estuarine sediments. Ecotoxicology, 14, 741–755.CrossRefGoogle Scholar
  10. Day, K. E., Dutka, B. J., Kwan, K. K., Batista, N., Reynoldson, T. B., & Metcalfe-Smith, J. L. (1995). Correlations between solid-phase microbial screening assays, whole sediment toxicity tests with macroinvertebrates and in situ benthic community structure. Journal of Great Lakes Research, 21, 192–206.Google Scholar
  11. Dutka, B. J., Nyholm, N., & Paterson, J. (1983). Comparison of several microbiological toxicity screening tests. Water Research, 17, 1363–1368.CrossRefGoogle Scholar
  12. Dutka, B. J., Tuominen, T., Churchland, L., & Kwan, K. K. (1989). Fraser river sediments and waters evaluated by the battery of the screening tests and techniques. Hydrobiologia, 188/189, 301–305.Google Scholar
  13. Ennas, C., Mugnai, C., Kozinkova, L., Bigongiari, N., & Pellegrini, D. (2002). Application of a bioassay battery for toxicity assessment of harbour sediments contaminated by heavy metals. Atti Associazione Italiana Oceanologia Limnologia, 15, 53–62.Google Scholar
  14. Giesy, J. P., & Hoke, R. A. (1989). Fresh-water sediment toxicity bioassessment—Rationale for species selection and test design. Journal of Great Lakes Research, 15, 539–569.CrossRefGoogle Scholar
  15. Hamilton, M. A., Russo, R. C., & Thurston, R. V. (1977). Trimmed Spearman–Karber method for estimating median lethal concentrations in toxicity bioassays. Environmental Science and Technology, 11, 714–719.CrossRefGoogle Scholar
  16. Johnson, B. T., & Long, E. R. (1998). Rapid toxicity assessment of sediments from large estuarine ecosystems: A new tandem in vitro testing approach. Environmental Toxicology and Chemistry, 17, 1099–1106.CrossRefGoogle Scholar
  17. Kevrekidis, T., & Koukouras, A. (1989). Seasonal variation of abundance of Gammarus aequicauda (Crustacea: Amphipoda) in the Evros Delta (NE Greece). Israel Journal of Zoology, 36, 113–123.Google Scholar
  18. Kohn, N. P., Word, J. Q., & Niyogi, D. K. (1994). Acute toxicity of ammonia to four species of marine amphipod. Marine Environmental Research, 38, 1–15.CrossRefGoogle Scholar
  19. Matthiessen, P., Bifield, S., Jarret, F., Kirby, M. F., Law, R. J., McWinn, W. R., et al. (1998). An assessment of sediment toxicity in the River Tyne estuary, U.K. by means of bioassays. Marine Environmental Research, 45, 1–15.CrossRefGoogle Scholar
  20. Mowat, F. S., & Bundy, K. J. (2002). Experimental and mathemathical/computational assessment of the acute toxicity of chemical mixtures from the Microtox® assay. Advances in Environmental Research, 6, 547–558.CrossRefGoogle Scholar
  21. Munawar, M., Munawar, I. F., Ross, P., & Dermott, R. (1992). Exploring aquatic ecosystem health: A multi-trophic and an ecosystemic approach. Journal of Aquatic Ecosystem Health, 1, 237–252.CrossRefGoogle Scholar
  22. Nendza, M. (2002). Inventory of marine biotest methods for the evaluation of dredged material and sediments. Chemosphere, 48, 865–883.CrossRefGoogle Scholar
  23. Onorati, F., Bigongiari, N., Pellegrini, D., & Giuliani, S. (1999a). The suitability of Corophium orientale (Crustacea, Amphipoda) in harbour sediment toxicity bioassessment. Aquatic Ecosystem Health and Management, 2, 465–473.CrossRefGoogle Scholar
  24. Onorati, F., Pellegrini, D., & Ausili, A. (1999b). Valutazione della tossicità naturale nel saggio Microtox® in fase solida: La normalizzazione pelitica. Acqua & Aria, 6, 83–91.Google Scholar
  25. Onorati, F., & Volpi Ghirardini, A. (2001). Informazioni fornite dalle diverse matrici da testare con i saggi biologici: Applicabilità di Vibrio fischeri. Biologia Marina Mediterranea, 8(2), 41–59.Google Scholar
  26. Oslo and Paris Commission (OSPARCOM). (1998). OSPAR Guidelines for the management of Dredged Material, 32 pp.Google Scholar
  27. Pastorok, R. A., & Becker, D. S. (1990). Comparative sensitivity of sediment toxicity bioassays at three superfund sites. In W. G. Landis & W. H. van der Schalie (Eds). Aquatic Toxicology and Risk Assessment 13 (13 pp.). ASTM 123-39, Philadelphia, USA.Google Scholar
  28. Prato, E., & Biandolino, F. (2005). Gammarus aequicauda (Crustacea: Amphipoda): A potential species test in marine sediment toxicity assessment. Aquatic Ecosystem Health and Management, 8(4), 475–482.CrossRefGoogle Scholar
  29. Prato, E., & Biandolino, F. (2006). Monocorophium insidiosum (Crustacea, Amphipoda) as a candidate species in sediment toxicity testing. Bulletin of Environmental Contamination and Toxicology, 77(1), 1–9.CrossRefGoogle Scholar
  30. Prato, E., Di Leo, A., Biandolino, F., & Cardellicchio, N. (2006). Sediment toxicity tests using two species of marine amphipods: Gammarus aequicauda and Corophium insidiosum. Bullettin of Environmental Contamination and Toxicology, 76, 629–636.CrossRefGoogle Scholar
  31. Prato, E., Biandolino, F., & Scardicchio, C. (2007). The effects of salinity on the toxicity of cadmium to Corophium insidiosum. Biologia Marina Mediterranea, 14(1), 216–218.Google Scholar
  32. Society of Environmental Toxicology and Chemistry (SETAC)-Europe. (1993). Guidance document on sediment toxicity assessment for freshwater and marine environments. In I. R. Hill, P. Matthiessen, & F. Heinbach (Eds.), Workshop on Sediment Toxicity Assessment, Renesse, The Netherlands, 8–10 November 1993, SETAC-Europe.Google Scholar
  33. Traunspurger, W., & Drews, C. (1996). Toxicity analysis of freshwater and marine sediments with meio- and macrobenthic organisms: A review. Hydrobiologia, 328, 215–261.CrossRefGoogle Scholar
  34. Weideborg, M., Vik, E. A., Ofjord, G. D., & Kjonno, O. (1997). Comparison of three marine screening tests and four Oslo and Paris Commission procedures to evaluate toxicity of offshore chemicals. Environmental Toxicology and Chemistry, 16, 384–389.CrossRefGoogle Scholar
  35. Wildhaber, M. L., & Schmitt, C. J. (1996). Estimating aquatic toxicity as determined through laboratory tests of great lakes sediments containing complex mixtures of environmental contaminants. Environmental Monitoring and Assessment, 41(3), 255–289.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • M. Narracci
    • 1
  • R. A. Cavallo
    • 1
  • M. I. Acquaviva
    • 1
  • E. Prato
    • 1
  • F. Biandolino
    • 1
  1. 1.CNR–Istituto Ambiente Marino CostieroTarantoItaly

Personalised recommendations