Environmental Monitoring and Assessment

, Volume 144, Issue 1–3, pp 341–349 | Cite as

A highly sensitive spectrophotometric determination of micro amounts of vanadium(V) in environmental and alloy samples by using 3,4-dihydroxybenzaldehydeisonicotinoylhydrazone (3,4-DHBINH)

  • S. Lakshmi Narayana
  • K. Janardhan Reddy
  • S. Adi Narayana Reddy
  • Y. Sarala
  • A. Varada Reddy


3, 4-Dihydroxybenzaldehydeisonicotinoylhydrazone was prepared, characterized with spectral analyses and used for developing a new method for the simple, sensitive and rapid spectrophotometric determination of vanadium(V) which gives maximum absorbance at wave length 360 nm. The metal ion gives a yellow colored complex with 3, 4-DHBINH in acetate buffer of pH 5.5 with 1:1 (metal:ligand) composition. The method obeys Beer’s law in the range 0.5–5.3 μg mL−1 of vanadium(V). The molar absorptivity and Sandell’s sensitivity were found to be 1.29 × 104 L mol−1 cm−1 and 0.003949 μg cm−2 respectively. The correlation co-efficient of the V(V)-3, 4-DHBINH complex was 0.992 which indicated an excellent linearity between the two variables. The repeatability of the method was checked by finding the relative standard deviation (RSD) as 0.424% (n = 5), and its detection limit 0.01677 μg mL−1 of vanadium(V). The instability constant of the method was calculated by Asmus’ method as 4.1666 × 10−3. The interfering effect of various cations and anions were also studied. The proposed method was successfully applied to the determination of vanadium(V) in environmental samples (water and soil) tobacco leaves and alloy samples. The validity of the method was tested by comparing the results with those obtained using an atomic absorption spectrophotometer.


3,4-Dihydroxybenzaldehydeisonicotinoylhydrazone Vanadium(V) Spectrophotometry Environmental and alloy samples 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abebaw, A., & Chandravanshi, B. S. (1996). Bulletin of the Chemical Society of Ethiopia, 10(2), 121.Google Scholar
  2. Alemayehu, A., & Singh, C. B. (1998). Chemical analysis (Warsaw), 43, 33.Google Scholar
  3. APHA (1995). Standard methods for examination of water and waste water (pp. 3–101 19th ed.). Washington DC: American Public Health Association.Google Scholar
  4. Arya, S. P., & Mahajan, M. J. (1997). Journal of the Indian Chemical Society, 74(1), 66.Google Scholar
  5. Asmus, E. Z. (1960). Analytical Chemistry, 178, 104.CrossRefGoogle Scholar
  6. Bent, H. R., & French, C. L. (1941). Journal of the American Chemical Society, 63, 568.CrossRefGoogle Scholar
  7. Bieluonwu, A. U. (1996). African Journal of Science and Technology. Series B, 8(7), 32.Google Scholar
  8. Chakrabarthi, A. K. (1995). Talanta, 42, 1279.CrossRefGoogle Scholar
  9. Charlot, G., & Bezier, D. (1957). Quantitative inorganic analysis p. 623. London: Methuen and Co. Ltd.Google Scholar
  10. Harvey, A. E., & Manning. D. L. (1950 and 1952). Journal of the American Chemical Society, 272, 4488 and 4, 4744.Google Scholar
  11. Iranpur, N., Maliki, N., Razi, S., & Safari, A. (1992). Talanta, 39(3), 281.CrossRefGoogle Scholar
  12. Jackson, M. L. (1987). Soil chemical analysis p. 326. Englewood Cliffs: Prentice-Hall.Google Scholar
  13. Job, P. (1928). Annali di chimica (Paris), 9, 113.Google Scholar
  14. Kallol Ghosh, K., Santhos Sar, K., & Deb Manas, K. (1997). Journal of the Indian Chemical Society, 74(8), 662.Google Scholar
  15. Kolthoff, I. M., Elving, P. I., & Stross, F. H. (1971). Treatise on analytical chemistry, Part III, vol. 2 p. 89. New York: wiley Interscience.Google Scholar
  16. Mustafa, M. E., Elmossalamu, E. M., & Manateshefte, A. A. S. (1995). Fur Chemie, 126(8–9), 662.Google Scholar
  17. Patel, B., Henderson, G. E., Haswell, S. J., & Grzeskowiak, R. (1990). Analyst, 115, 1063.CrossRefGoogle Scholar
  18. Razie, B., Goswami, A. K., & Purohit, D. N. (1994). Asian Journal of Chemistry, 6(1), 187.Google Scholar
  19. Sah, P. T., & Peoples, S. A. (1954). Journal of American Pharmaceutical Association, Sci. Ed., 43, 513.CrossRefGoogle Scholar
  20. Sakurai, H. (2002). Wiley inter science, 2, 237–248.Google Scholar
  21. Salinas, F., Martinezoidal, J. L., & Martinezgalara, M. (1992). Bulleten Des Societies Chemiques, Belges, 101(11), 931.Google Scholar
  22. Singh, C. B., & Berhanu, T. (1996). Annali di Chimica (Rome), 86, 401.Google Scholar
  23. Yoe, J. H., & Jones, A. C. (1944). Industrial and Engineering Chemistry. Analytical Edition, 4, 4744.Google Scholar
  24. Yu Kitaev, P., Buzykin, B. I., & Troepolskaya, T. V. (1970). Russian Chemical Reviews, 441.Google Scholar
  25. Zhou, N., He, C. X., Gu, N. L., & Chen, P. B. (1994). Analyst, 119(9), 2105.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • S. Lakshmi Narayana
    • 1
  • K. Janardhan Reddy
    • 1
  • S. Adi Narayana Reddy
    • 1
  • Y. Sarala
    • 2
  • A. Varada Reddy
    • 1
  1. 1.Analytical Division, Department of ChemistrySri Venkateswara UniversityTirupatiIndia
  2. 2.Department of ChemistryC.B.I.T.HyderabadIndia

Personalised recommendations