Skip to main content
Log in

Particle size distribution of aerosols and associated heavy metals in kitchen environments

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mass size distributions of total suspended particulate matter (TSPM) was measured from Sep 2002 to April 2003 in indoor kitchen environments of five locations in Jawaharlal Nehru University (JNU), New Delhi, with the help of a high volume cascade impactor. Particulate matters were separated in five different size ranges, i.e. >10.9 μm, 10.9–5.4 μm, 5.4–1.6 μm, 1.6–0.7 μm and <0.7 μm. The particle size distribution at various sites appears to follow uni-modal trend corresponding to fine particles i.e. size range <0.7 μm. The contributions of fine particles are estimated to be approximately 50% of TSPM and PM10.9, while PM10.9 comprises 80% of TSPM. Good correlations were observed between various size fractions. Regression results reveal that TSPM can adequately act as a surrogate for PM10.9 and fine particles, while PM10.9 can also act as surrogate for fine particles. The concentrations of heavy metals are found to be dominantly associated with fine particles. However, the concentration of some metals and their size distribution, to some extent is also site specific (fuel type used).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AAS Manual (1983). Philips analytical AAS data book. Cambridge, England: Bear Press Limited.

    Google Scholar 

  • Anderson, J. R., Agget, F. J., Buseck, P. R., Germani, M. S., & Shattuck, T. (1988). Chemistry of individual aerosol particles from Chandler, Arizona, an arid urban environment. Environmental Science and Technology, 22, 811–818.

    Article  CAS  Google Scholar 

  • Armstrong, J. R. M., & Campbell, H. (1991). Indoor air pollution exposure and lower respiratory infections in young Gambian children. International Journal of Epidemiology, 20, 424–429.

    Article  CAS  Google Scholar 

  • Balachandran, S., Meena, B. R., & Khillare, P. S. (2000) Particle size distribution and its elemental composition in the ambient air of Delhi. Environment International, 26, 49–54.

    Article  CAS  Google Scholar 

  • Baron, P. A., & Willeck, K. (1993) Aerosol fundamental’s in aerosol measurement, Principle, technique and application. New York: Van Nostrand Reinholds. pp. 8–32.

    Google Scholar 

  • Cheng, B. H., Hong, C. J., Pnadey, M. R., & Smith, K. R. (1990). World Health Statistics (quarterly), 43, 127–138.

    Google Scholar 

  • Dockery, D. W., Pope, C. A., Ku, X., Spengler, J. D., Ware, J. H., Ferris, B. G., et al. (1993). Mortality risk of air pollution: a prospective cohort study. New England Journal of Medicine, 329, 1753–1759.

    Article  CAS  Google Scholar 

  • EPA Manual (1983). Methods of chemical analysis of water and wastes. Cincinnati, OH: US Environmental Protection Agency.

    Google Scholar 

  • Infante, R., & Acosta, I. L. (1990). Size distribution of trace metals in Ponce, Puerto Rico air particulate matter. Atmospheric Environment, 25B, 121–131.

    Google Scholar 

  • Katz, M. (1977) Methods of air sampling and analysis (2nd ed.). Washington, DC: APHA.

    Google Scholar 

  • Kumar, P. (2001). Characterization of indoor respirable dust in a locality of Delhi. Indoor and Built Environment, 10, 95–102.

    CAS  Google Scholar 

  • Leaderer, B. P., Koutrakis, P., Briggs, S. L., & Rizzuto, J. (1994). The mass concentration and elemental composition of indoor aerosols in Suffolk and Onondaga Counties, New York. Indoor Air, 4, 23–34.

    Article  CAS  Google Scholar 

  • Mc Cornac, B. H. (1971). Introduction to the scientific study of air pollution. Holland: Reide Dordreet.

    Google Scholar 

  • Melia, R. J. W., Chinn, S., & Rona, R. J. (1989) Indoor level of NO2 associated with gas cooker and kerosene heater in inner city areas of England. Atmospheric Environment, 24B, 177–180.

    Google Scholar 

  • Morawska, L., Thomas, S., Jamriska, M., & Johnson G. (1999). The modality of particle size distribution of environmental aerosol. Atmospheric Environment, 33, 4401–4411.

    Article  CAS  Google Scholar 

  • Orsini, C. Q., Tabacniks, M. H., Artaxo, P., Andrade, M. F., & Kerr, A. S. (1986). Characterization of fine and coarse particles of natural and urban aerosols of Brazil. Atmospheric Environment, 20, 2259–2270.

    Article  CAS  Google Scholar 

  • Owen, M. K., Ensor, D. S., & Sparks, L. E. (1992) Airborne particle sizes and sources found in indoor air. Atmospheric Environment, 26A, 2149–2162.

    CAS  Google Scholar 

  • Park, E., & Lee, K. (2003). Particulate exposure and size distribution from wood burning stoves in Costa Rica. Indoor Air, 13, 253–259.

    Article  CAS  Google Scholar 

  • Sienfeld, J. H., & Pandis, S. N. (1988). Atmospheric Chemistry and Physics: From air pollution to global change. New York: Wiley.

    Google Scholar 

  • Smith, K. R. (2000). Indoor air quality and health. Atmospheric Environment, 34, 3645–3646.

    Article  CAS  Google Scholar 

  • Spengler, J. D., & Thurston, G. D. (1983). Mass and elemental composition of fine and coarse particles in six U.S. cities. Journal Air Waste Management Association, 33, 1162–1171.

    CAS  Google Scholar 

  • Srivastava, A., & Jain, V. K. (2003). Relationships between indoor and outdoor air quality in Delhi. Indoor and Built Environment, 12(3), 159–165.

    Article  CAS  Google Scholar 

  • Srivastava, A., & Jain, V. K. (2005). A study to characterize the influence of outdoor suspended particulate matter and associated metals in the indoor environments in Delhi. Journal of Environmental Science and Engineering, 47(3), 222–231.

    CAS  Google Scholar 

  • Srivastava, A., & Jain, V. K. (2007a). A study to characterize the suspended particulate matter in an indoor environment in Delhi, India. Building and Environment, 42(5), 2046–2052.

    Article  Google Scholar 

  • Srivastava, A., & Jain, V. K. (2007b). Size distribution and source identification of suspended particulate matters in atmospheric aerosols over Delhi. Chemosphere, 68, 579–589.

    Article  CAS  Google Scholar 

  • Vincent, J. H. (1989). Aerosol sampling: Sciences and practice. Chichester: Wiley, p. 390.

    Google Scholar 

  • Wall, S. M., John, W., & Ondo, J. L. (1988). Measurement of aerosol size distribution for nitrate and major ionic species. Atmospheric Environment, 22, 1649–1658.

    Article  CAS  Google Scholar 

  • Whitby, K. T. (1978). The physical characterization of sulphur aerosols. Atmospheric Environment, 12, 135–159.

    Article  CAS  Google Scholar 

  • Zoller, W. H., Glatney, E. S., & Duce, R. A. (1974). Atmospheric concentration and sources of trace metals in the South Pole. Science, 183, 198–200.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Srivastava, A. & Jain, V.K. Particle size distribution of aerosols and associated heavy metals in kitchen environments. Environ Monit Assess 142, 141–148 (2008). https://doi.org/10.1007/s10661-007-9915-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9915-8

Keywords

Navigation