Advertisement

Environmental Monitoring and Assessment

, Volume 142, Issue 1–3, pp 117–126 | Cite as

Monitoring of trace elements in honey from the Republic of Macedonia by atomic absorption spectrometry

  • Elena Stankovska
  • Trajče Stafilov
  • Robert Šajn
Article

Abstract

Contents of Zn, Cu, Fe, Mn, Cd, Na, K, Ca and Mg in 123 honey samples from different regions of the Republic of Macedonia were determined by atomic absorption spectrometry. A microwave digestion system was applied for digestion of the samples. The mean content for the elements determined was found to be: 2.252, 0.696, 1.885, 1.752, 0.004, 29.52, 984.8, 40.11, 18.24 mg kg−1 for Zn, Cu, Fe, Mn, Cd, Na, K, Ca and Mg, respectively. Based on a comparison of statistical parameters, the spatial distribution of particular elements in Macedonian honey and the results of factor analysis, two natural and one anthropogenic geochemical associations were identified. The natural geochemical associations (Mg, Mn, Ca, K and Fe, Zn, Ca, –K, –Na) are influenced mainly by lithology. The anthropogenic associations (Cd and –Cu) are mostly a result of metallurgical activities, namely lead production in the town of Veles.

Keywords

Honey Trace elements Microwave digestion Atomic absorption spectrometry Factor analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anklam, E. (1998). A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chemistry, 63, 549–562.CrossRefGoogle Scholar
  2. Arvanitoyannis, I. S., Chalhoub, C., Gotsiou, P., Lydakis-Simantiris N., & Kefalas, P. (2005). Novel quality control methods in conjunction with chemometrics (multivariate analysis) for detecting honey authenticity. Critical Reviews in Food Science and Nutrition, 45, 193–203.CrossRefGoogle Scholar
  3. Buldini, P. L., Cavalli, S., Mevoli, A., & Sharma, J. L. (2001). Ion chromatographic and voltammetric determination of heavy and transition metals in honey. Food Chemistry, 73, 487–495.CrossRefGoogle Scholar
  4. Čelechovská, O., & Vorlová, L. (2001). Groups of honey – physicochemical properties and heavy metals. Acta Veterinaria Brno, 70, 91–95.Google Scholar
  5. Davis, J. C. (1986). Statistic and data analysis in geology (646). New York: Wiley.Google Scholar
  6. Devillers, J., Doré, J. C., Marenco, M., Poirier-Douchêne, F., Galand, N., & Viel, C. (2002). Chemometrical analysis of 18 metallic and nonmetallic elements found in honeys sold in France. Journal of Agricultural and Food Chemistry, 50, 5998–6007.CrossRefGoogle Scholar
  7. Erbilir, F., & Erdoğrul, Ö. (2005). Determination of heavy metals in honey in Kahramanmaraş City, Turkey. Environmental Monitoring and Assessment, 109, 181–187.CrossRefGoogle Scholar
  8. Fernández-Torres, R., Pérez-Bernal, J. L., Bello-López, M. Á., Callejón-Mochón, M., Jiménez-Sánchez, J. C., & Guiraúm-Pérez, A. (2005). Mineral content and botanical origin of Spanish honeys. Talanta, 65, 686–691.CrossRefGoogle Scholar
  9. Golob, T., Doberšek, U., Kump, P., & Nečemer, M. (2005). Determination of trace and minor elements in Slovenian honey by total reflection X-ray fluorescence spectroscopy. Food Chemistry, 91, 593–600.CrossRefGoogle Scholar
  10. González-Miret, M. L., Terrab, A., Hernanz, D., Fernández-Recamales, M. Á., & Heredia, F. J. (2005). Multivariate correlation between color and mineral composition of honeys and by their botanical origin. Journal of Agricultural and Food Chemistry, 53, 2574–2580.CrossRefGoogle Scholar
  11. González Paramás, A. M., Gómez Bárez, J. A., Garcia-Villanova, R. J., Palá, T. R., Albajar, R. A., & Sánchez, J. S. (2000). Geographical discrimination of honeys by using mineral composition and common chemical quality parameters. Journal of the Science of Food and Agriculture, 80, 157–165.CrossRefGoogle Scholar
  12. Hernández, O. M., Fraga, J. M. G., Jiménez, A. I., Jiménez, F., & Arias, J. J. (2005). Characterization of honey from the Canary Islands: Determination of the mineral content by atomic absorption spectrophotometry. Food Chemistry, 93, 449–458.CrossRefGoogle Scholar
  13. Ioannidou, M. D., Zachariadis, G. A., Anthemidis, A. N., & Stratis, J. A. (2005). Direct determination of toxic trace metals in honey and sugars using inductively coupled plasma atomic emission spectrometry. Talanta, 65, 92–97.Google Scholar
  14. Lattore, M. J., Peña, R., Pita, C., Botana, A., García, S., & Herrero, C. (1999). Chemometric classification of honeys according to their type. II. Metal content data. Food Chemistry, 66, 263–268.CrossRefGoogle Scholar
  15. Le Maitre, R. W. (1982). Numerical petrology: Statistical interpretation of geochemical data. Amsterdam: Elsevier.Google Scholar
  16. Matei, N., Birghila, S., Dobrinas, S., & Capota, P. (2004). Determination of C vitamin and some essential trace elements (Ni, Mn, Fe, Cr) in bee products. Acta Chimica Slovenica, 51, 169–175.Google Scholar
  17. Muñoz, E., & Palmero, S. (2006). Determination of heavy metals in honey by potentiometric stripping analysis and using continuous flow methodology. Food Chemistry, 94, 478–483.CrossRefGoogle Scholar
  18. Nalda, M. J. N., Yagüe, J. L. B., Calva, J. C. D., & Gómez, M. T. M. (2005). Classifying honeys from the Soria province of Spain via multivariate analysis. Analytical and Bioanalytical Chemistry, 382, 311–319.CrossRefGoogle Scholar
  19. Perišić, M. (1983). Applied geostatistics (534). Belgrade: Mining Institute.Google Scholar
  20. Przybylowsky, P., & Wilczy´ska, A. (2001). Honey as an environmental marker. Food Chemistry, 74, 289–291.CrossRefGoogle Scholar
  21. Reimann, C., Filzmoser, P., & Garrett, R. G. (2002). Factor analysis applied to regional geochemical data: Problems and possibilities. Applied Geochemistry, 17, 185–206.CrossRefGoogle Scholar
  22. Rodríguez García, J. C., García, G. B., Herrero Latorre, C., García Martín, S., & Peña Crecente, R. M. (2005). Direct and combined methods for the determination of chromium, Cu, and nickel in honey by electrothermal atomic absorption spectroscopy. Journal of Agricultural and Food Chemistry, 53, 6616–6623.CrossRefGoogle Scholar
  23. Sanna, G., Pilo, M. I., Piu, P. C., Tapparo, A., & Seeber, R. (2000). Determination of heavy metals in honey by anodic stripping voltammetry at microelectrodes. Analytica Chimica Acta, 415, 165–173.CrossRefGoogle Scholar
  24. Taddia, M., Musiani, A., & Schiavi, S. (2004). Determination of heavy metals in honey by Zeeman electrothermal atomic absorption spectrometry. Annali di Chimica, 94, 107–111.CrossRefGoogle Scholar
  25. Terrab, A., Hernanz, D., & Heredia F. J. (2004). Inductively coupled plasma optical emission spectrometric determination of minerals in thyme honeys and their contribution to geographical discrimination. Journal of Agricultural and Food Chemistry, 52, 3441–3445.CrossRefGoogle Scholar
  26. Terrab, A., Recamales, A. F., González-Miret, M. L., & Heredia, F. J. (2005). Contribution to the study of avocado honeys by their mineral contents using inductively coupled plasma optical emission spectrometry. Food Chemistry, 92, 305–309.CrossRefGoogle Scholar
  27. Tuzen, M., & Soylak, M. (2005). Trace heavy metal levels in microwave digested honey samples from Middle Anatolia, Turkey. Journal of Food and Drug Analysis, 1, 343–347.Google Scholar
  28. Yilamaz, H., & Yavuz, Ö. (1999). Content of some trace metals in honey from south-eastern Anatolia. Food Chemistry, 65, 475–476.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Elena Stankovska
    • 1
  • Trajče Stafilov
    • 1
  • Robert Šajn
    • 2
  1. 1.Institute of Chemistry, Faculty of ScienceSts. Cyril and Methodius UniversitySkopjeMacedonia
  2. 2.Geological Survey of SloveniaLjubljanaSlovenia

Personalised recommendations