The research of air pollution based on spectral features in leaf surface of Ficus microcarpa in Guangzhou, China

  • Jie Wang
  • Ruisong Xu
  • Yueliang Ma
  • Li Miao
  • Rui Cai
  • Yu Chen


Nowadays development of industry and traffic are the main contributor to city air pollution in the city of GuangZhou, China. Conventional methods for investigating atmosphere potentially harmful element pollution based on sampling and chemical analysis are time and labor consuming and relatively expensive. Reflectance spectroscopy within the visible-near-infrared region of vegetation in city has been widely used to predict atmosphere constituents due to its rapidity, convenience and accuracy. The objective of this study was to examine the possibility of using leaves reflectance spectra of vegetation as a rapid method to simultaneously assess pollutant (S, Cd, Cu, Hg, Pb, XCl, XF) in the atmosphere of the Guangzhou area. This article has studied the spectral features of polluted leaf surface of Ficus microcarpa in 1985 and 1998. According to the analysis, comprehensive assessment for the change of atmospheric condition and degrees of pollution were given. This conclusion was confirmed by the monitored data got from chemical analysis. Future study with real remote sensing data and field measurements were strongly recommended.


Ficus microcarpa Spectral feature Remote sensing Air pollution Guangzhou 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brooks, R. R. (1983). Biological methods of prospecting for minerals (pp. 62–68). Wiley, Chichester.Google Scholar
  2. Chang-Yi, W. (1982). Fluorine ion selective electrode for microdetermination of fluorine in organic compounds. Microchemical Journal, 27(4), 455–465.CrossRefGoogle Scholar
  3. Collins, W. (1983). Airborne biogeophysical mapping of hidden mineral deposists. Economic Geology, 78(4), 737–750.Google Scholar
  4. Cornejo, S. C., Marin, S. R., Olave, S. G., & Urratia, C. (1995). Determination of trace elements in aerosol samples collected on polycarbonate filters by atomic absorption spectrometry. International Journal of Environmental Analytical Chemistry, 60, 377–387.CrossRefGoogle Scholar
  5. Curran, P. J., Dungan, J. L., & Gholz, H. L. (1992). Seasonal LAI in slash pine estimated with Landsat TM. Remote Sensing of Environment, 39, 3–13.CrossRefGoogle Scholar
  6. Ebdon, L., Wilkinson, J. R., & Jackson, K. W. (1981). Determination of sub-nanogram amounts of mercury by cold-vapour atomic fluorescence spectrometry with an improved gas-sheathed atom cell. Analytica Chimica Acta, 128, 45–55.CrossRefGoogle Scholar
  7. Goetz, A. F., & Rock, B. N. (1983). Remote sensing for exploration: An overview. Economic Geology, 78(4), 575–583.CrossRefGoogle Scholar
  8. Gomez, R. A., Boxall, S. R., & Weeks, A. R. (2001). Detecting photosynthetic algal pigments in natural populations using a high-spectral-resolution spectroradiometer. International Journal of Remote Sensing, 22(15), 2867–2884.CrossRefGoogle Scholar
  9. Hasager, C. B., & Nielsen, S. T. (2001). IRS-IC LISS III land cover maps at different spatial resolutions used in real time accidental air pollution deposition modeling. Remote Sensing of Environment, 76, 326–336.CrossRefGoogle Scholar
  10. Herwitz, S., Peterson, D. L., & Eastman, J. R. (1990). Thematic mapper detection of changes in the leaf area of closed canopy pine plantations in Central Massachusetts. Remote Sensing of Environment, 30, 129–140.CrossRefGoogle Scholar
  11. Horler, D. N. H., Barber, J., & Barringer, A. R. (1980). Effects of heavy metals on the absorption and reflectance spectra of plants. International Journal of Remote Sensing, 1, 121–136.Google Scholar
  12. Horler, D. N. H., Dockray, M., & Barber, J. (1983). The red edge of plant leaf reflectance. International Journal of Remote Sensing, 4(2), 273–288.CrossRefGoogle Scholar
  13. Jeffrey, S. W., & Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algea and natural phytoplankton. Biochemical Physiology Pflanzen, 167, 191–194.Google Scholar
  14. John, P. F. (1969). Argentometric titration of chloride with dichlorofluoroscein as an adsorption indicator: A useful modification. Talanta, 16(5), 617–618.CrossRefGoogle Scholar
  15. Josep, P., John, A. G., Kevin, L. G., & Christopher, B. F. (1993). Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance. Remote Sensing of Environment, 46(2), 110–118.CrossRefGoogle Scholar
  16. Kalacsk, M., & Azofeifa, G. A. S., et al. (2004). Leaf area index measurements in a tropical moist forest: A case study from Costa Rica. Remote Sensing of Environment, 91(2), 134–152.CrossRefGoogle Scholar
  17. Kenneth, M., Timothy, M., & Lynn, F. (2000). Hyperspectral mixture modeling for quantifying sparse vegetation cover in arid environments. Remote Sensing of Environment, 72, 360–374.CrossRefGoogle Scholar
  18. Kevin, D. W., & Edward, W. D. (1990). Automatic absolute determination of total sulfur by combustion and coulometric titration. Microchemical Journal, 41(2), 139–147.CrossRefGoogle Scholar
  19. Miller, J. R., Hare, E. W., & Wu, J. (1990). Quantitative characterisation of the red edge reflectance 1. An inverted-Gaussian model. International Journal of Remote Sensing, 11(10), 1755–1773.CrossRefGoogle Scholar
  20. Mutanga, O., Skidmore, A., & Wieren, S. (2003). Discriminating tropical grass (Cenchrus ciliaris) canopies grown under different nitrogen treatments using spectroradiometry. ISPRS Journal of Photogrammetry & Remote Sensing, 57, 263–272.CrossRefGoogle Scholar
  21. Pablo, J. Z. T., John, R. M., Gina, H. M., & Thomas, L. N. (2000a). Chlorophyll fluorescence effect on vegetation apparent reflectance: I. Leaf level measurements and model simulation. Remote Sensing of Environment, 24, 582–595.Google Scholar
  22. Pablo, J. Z. T., John, R. M., Gina, H. M., Thomas, L. N., & Sampson, P. H. (2000b). Chlorophyll fluorescence effects on vegetation apparent reflectance: II. Laboratory and airborne canopy-level measurements with hyperspectral data. Remote Sensing of Environment, 74, 596–608.CrossRefGoogle Scholar
  23. Pearson, R. L., & Miller, L. D. (1972). Remote mapping of standing crop biomass for estimation of the productivity of the short-grassprairie, Pawnee National Grasslands, Colorado. Proceedings of the 8th International Symposium on Remote Sensing of Environment (pp. 1357–1381). ERIM International.Google Scholar
  24. Peterson, D. L., Spanner, M. A., Running, S. W., & Teuber, K. B. (1987). Relationship of thematic mapper simulator data to leaf area index of temperate coniferous forests. Remote Sensing of Environment, 22, 323–341.CrossRefGoogle Scholar
  25. Price, K. P., Pyke, D. A., & Mendes, L. (1992). Shrub dieback in a semiarid ecosystem: The integration of remote sensing and geographic information systems for detecting vegetation change. Photogrammetric Engineering and Remote Sensing, 58(4), 455–463.Google Scholar
  26. Raymond, F. K. (2001). Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sensing of Environment, 75, 153–161.CrossRefGoogle Scholar
  27. Rock, B. N. (1986a). Remote detection of forest damage. Bioscience, 36(7), 439–445.CrossRefGoogle Scholar
  28. Rock, B. N., Hoshizaki, T., & Miller, J. R. (1988). Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline. Remote Sensing of Environment, 24, 109–127.CrossRefGoogle Scholar
  29. Rouse, J. W., Haas, R. H., & Schell, J. A. (1974). Monitoring the vernal advancement of retrogradiation of natural vegetation. NASA/GSFC, type III, final report (pp. 1–371). Reenbelt, MD: USA.Google Scholar
  30. Sifakis, N. I., & Deschamps, P. Y. (1992). Mapping of air pollution using SPOT satellite data. Photogrammetric Engineering and Remote Sensing, 58, 1433–1437.Google Scholar
  31. Spanner, M. A., Pierce, L. L., Peterson, D. L., & Running, S. W. (1990a). Remote sensing of temperate coniferous forest leaf area index—the influence of canopy closure, understory vegetation and background reflectance. International Journal of Remote Sensing, 11, 95–111.CrossRefGoogle Scholar
  32. Spanner, M. A., Pierce, L. L., Running, S. W., & Peterson, D. L. (1990b). The seasonality of AVHRR data of temperate coniferous forests: Relationship with leaf area index. Remote Sensing of Environment, 33, 97–112.CrossRefGoogle Scholar
  33. Susan, L. U., & Brian, C. (1990). Spectral characteristics of ozone-treated conifers. Environmental and Experimental Botany, 30(3), 193–308.Google Scholar
  34. Tommervik, H., Johansen, B. E., & Pedersen, J. P. (1992). Use of multitemporal Landsat image data for mapping of the effects of air pollution on vegetation in the Kirkenes-Pechenga area in the period 1973–1988. NORUT report 2024/l-92, Tromso, 32 pp.Google Scholar
  35. Xu, R. S. (2002). Petroleum and gas research by remote sending in South China Sea. International Society for Photogrammetry and Remote Sensing and Spatial Information Sciences, 34(4), 699–703.Google Scholar
  36. Xu, R. S., & Ma, Y. L. (2004). Remote sensing research in biogeochemistry of the Hetai gold deposit, Guangdong Province, China. International Journal of Remote Sensing, 25(2), 437–454.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouPeople’s Republic of China
  2. 2.CAS Key Laboratory of Marginal Sea GeologyChinese Academy of SciencesGuangzhouPeople’s Republic of China
  3. 3.Institute of South China SeaChinese Academy of SciencesGuangzhouPeople’s Republic of China
  4. 4.Graduate School of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations