Environmental Monitoring and Assessment

, Volume 141, Issue 1–3, pp 149–164 | Cite as

Estimating the importance of natural and anthropogenic sources on N and P emission to estuaries along the Ceará State Coast NE Brazil

  • Luiz Drude Lacerda
  • Mauricio Mussi Molisani
  • Daniel Sena
  • Luis Parente Maia


The Northeastern semi-arid Brazilian region is experiencing rapid social and economic development based on improving water management and even in areas of low human occupation, anthropogenic emissions of N and P surpass natural emissions in at least one order of magnitude and these additional loads can alter the water quality of the receiving estuaries. This study estimates, using an emission factor approach, the annual emissions of N and P from natural processes and anthropogenic sources for estuaries along the Ceará State, NE Brazil. Emission factors from natural sources are one to two orders of magnitude lower than those for anthropogenic sources. Among the anthropogenic activities, the aquaculture is responsible for most N emission (0.52 t km−2 year−1) followed by waste water and husbandry. For P, the largest average emission factors are from husbandry (0.30 t km−2 year−1), waste water and agriculture.


Nitrogen Phosphorous Emission factor Estuary Northeastern semi-arid Brazil 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABCC (Associação Brasileira dos Criadores de Camarão) (2003). Censo da produção do camarão marinho cultivado. Recife: ABCC.Google Scholar
  2. ABES (Associação Brasileira de Engenharia Sanitária e Ambiental) (1983). Catálogo Brasileiro de Engenharia Sanitária (p. 127). Rio de Janeiro: ABES.Google Scholar
  3. Abreu, I. M., Lacerda, L. D., & Marins, R. V. (2003). Estimativa de emissões de Carbono, Fósforo e Nitrogênio para o Estuário do Rio Jaguaribe (CE). In Proceedings of the IX Congresso de Ecologia do Brasil, Fortaleza (CE).Google Scholar
  4. Agrobyte (2003). Cana de Açúcar, Retrived March 4, 2006 from http://www.agrobyte.com.br/cana.htm.
  5. Barcellos, C., & Lacerda, L. D. (1994). Cadmium and zinc source assessment in Sepetiba Bay and basin region. Environmental Monitoring and Assessment, 29, 183–189.CrossRefGoogle Scholar
  6. Bidone, E. D. (2000). Análise econômica-ambiental aplicada à contaminação de águas fluviais de pequenas bacias costeiras do Estado do Rio de Janeiro. In F. A. Esteves & L. D. Lacerda (Eds.), Ecologia de restingas e lagoas costeira. Rio de Janeiro: UFRJ.Google Scholar
  7. Bidone, E. D., & Lacerda, L. D. (2002). A preliminary approach of the link between socio-economic and natural indicators into a driver-pressure-impact-response framework case study: Guanabara Bay basin, Rio de Janeiro, Brazil. In L. D. Lacerda, H. H. Kremer, B. Kjerfve, W. Salomons, J. I. Marshall-Crossland, & J. C. Crossland (Eds.), South American basins: LOICZ global change assessment and synthesis of river catchment – coastal sea interaction and human dimensions. Textel: LOICZ Reports & Studies.Google Scholar
  8. Binner, E., Lechner, P., Ziegler, C., & Riehl-Herwirsch, G. (1996). Breitenau landfill – Water balance, emissions and a look into the landfill body. Breitenau landfill (p. 11). Viena.Google Scholar
  9. Bouwman, A. F., & Booij, H. (1998). Global use and trade of feedstuff and consequences for the nitrogen cycle. Nutrient Cycling in Agroecosystems, 52, 262–267.CrossRefGoogle Scholar
  10. Bouwman, A. F., Lee, D. S., Asman, A. H., Dentener, F. J., van der Hoek, K. W. A. & Olivier, J. G. J. (1997). A global high-resolution inventory for ammonia. Global Biogeochemical Cycles, 11, 561–587.CrossRefGoogle Scholar
  11. Boyd, C. E. (1971). The limnological role of aquatic macrophytes and their relationship to reservoir management. In Washington American Fisheries Society (Ed.), Special publication 8 (pp. 153–166). Washington.Google Scholar
  12. Bricker, S. B., Clement, C. G., Pirhalla D. E., Orlando, S. P., & Farrow, D. G. G. (1999). National estuarine eutrophication assessment: Effects of nutrient enrichment in the nation’s estuaries’. Special Projects Office and the National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration. Silver Spring, MD.Google Scholar
  13. Brunner, U. (1998). The Biogeochemical cycles of phosphorus: A review of local and global consequences of the atmospheric input. Technological and Environmental Chemistry, 167, 171–188.Google Scholar
  14. Burford, M. A., Costanzo, S. D., Dennison, W. C., Jackson, C. J., Jones, A. B., McKinnon, A. D., et al. (2003). A synthesis of dominant ecological processes in intensive shrimp ponds and adjacent coastal environments in NE Australia. Marine Pollution Bulletin, 46, 1456–1469.CrossRefGoogle Scholar
  15. Burns, D. A. (2004). The effects of atmospheric nitrogen deposition in the rocky mountains of Colorado and Southern Wyoming, USA – A critical review. Environmental Pollution, 127, 257–269.CrossRefGoogle Scholar
  16. CFSEMG (1989). Recomendações para o Uso de Corretivos e Fertilizantes em Minas Gerais. In Comissão de Fertilidade do Estado de Minas Gerais (Ed.). Lavras: Escola superior de Agricultura de Lavras.Google Scholar
  17. CPAA (Centro de Pesquisas do Açúcar e do Álcool) (2003). Insumos de Adubação Aplicados ao Sistema Agroflorestal. Empresa Brasileira de Pesquisa Agropecuária. Retrieved November 19, 2005, from http://www.cpaa.embrapa.br/prosiaf.
  18. Davis, A. P., Shokouhian, M., & Shubei, M. (2001). Loading estimates of lead, copper, cadmium and zinc in urban runoff from specific sources. Chemosphere, 44, 997–1009.CrossRefGoogle Scholar
  19. DGPC (Divisão Geral de Proteção das Culturas) (2003). Produção Integrada de Citrinos, Ministerio da Agricultura, Desenvolvimento Rural e das Pescas. (DGPC), Oeiros. http://www.dgpc.min-agricultura.pt.
  20. Döll, P., & Hauschild, M. (2002). Model-based scenarios of water use in two semi-arid Brazilian states. Regional Environmental Change, 2, 150–162.CrossRefGoogle Scholar
  21. EEA (1999). Nutrients in European ecosystems. Environmental Assessment Report, n°. 4, European Environmental Agency, Office for Official Publications of the European Communities, Luxemburg.Google Scholar
  22. EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) (2003) Agroecologia da Cana de Açúcar. Retrieved January, 16, 2006, from http://www.embrapa.br.
  23. Esteves, F. A. (1998). Fundamentos de limnologia (2nd ed.). Rio de Janeiro: Editora Interciência.Google Scholar
  24. Ferreira, J.M.S. (2003). Produção Integrada de Coco. Aracaju: EMBRAPA Tabuleiros Costeiros, 107p.Google Scholar
  25. Figueiredo, M. C. B., Araújo, L. F. P., Gomes, R. B., Rosa, M. F., Paulino, W. D., & Morais, L. F. S. (2005). Impactos ambientais do lançamento de efluentes da carcinicultura em águas interiores. Engenharia Sanitária e Ambiental, 10, 167–174.Google Scholar
  26. FUNCEME – Fundação Cearense de Meteorologia e Recursos Hídricos (2005). Séries emporais de pluviosidade. Retrieved February, 11, 2005 from http://www.funceme.br.
  27. Gaiser, T., Krol, M. S., Frischkorn, H., & Araujo, J. C. (2003). Global change and regional impacts: Water availability and vulnerability of ecosystems and society in the semi-arid Northeast of Brazil. Berlin, Heidelberg, New York: Springer.Google Scholar
  28. Golley, F. B., Mc Guiness, J. T., Clements, R. G., Child, G. I., & Duever, M. J. (1978). Ciclagem de minerais em um ecossistema de floresta tropical úmida. São Paulo: EDUSP.Google Scholar
  29. Goudie, A. (1987). The human impact: On the natural environment. Cambridge, MA: MIT Press Ed.Google Scholar
  30. Greenland, D. J., & Lal, R. (1977). Soil conservation and management in the humid tropics. Chischester: Wiley.Google Scholar
  31. Hidroservice (1998). Plano Estadual de Recursos Hídricos. Relatório Síntese. Natal: Secretaria estadual de Recursos Hídricos, HE1358-R30/1198, 235p.Google Scholar
  32. Howarth, R. W. (1998). An assessment of human influences on inputs of nitrogen to estuaries and continental shelf of the North Atlantic Ocean. Nutrient Cycling in Agroecosystems, 52, 213–223.CrossRefGoogle Scholar
  33. Howarth, R. W., Billen, D., Swaney, A., Townsend, N., Janarski, K., Lajtha, K., et al. (1996). Regional nitrogen budgets and phosphorus fluxes from the drainages to the North Atlantic Ocean. Biogeochemistry, 46, 203–231.Google Scholar
  34. IBGE – Instituto Brasileiro de Geografia e Estatísticas (2006). Censo demográfico 2002. Retrieved March 25, 2006 from http://www.ibge.gov.br/cidadesat/default.php.
  35. I.C. Consultants (2001). Pollutants in urban waste water and sewage sludge. Luxembourg: The Office for Official Publications of the European Communities.Google Scholar
  36. IDEMA (Instituto de Desenvolvimento Econômico e Meio Ambiente do Rio Grande do Norte). (1999a). Informativo Municipal. vol. 5. Natal: Canguaretama, 1-14 pp.Google Scholar
  37. IDEMA (Instituto de Desenvolvimento Econômico e Meio Ambiente do Rio Grande do Norte). (1999b). Informativo Municipal. vol. 5. Natal: Pedro Velho, 14-23 pp,Google Scholar
  38. Jackson, C., Preston, N. P., Thompson, P., & Burford, M. (2003). Nitrogen budget and effluent nitrogen components at an intensive shrimp farm. Aquaculture, 218, 397–411.CrossRefGoogle Scholar
  39. Johnson, D. W., & Lindberg, S. E. (1998). Atmospheric deposition and forest nutrient cycling. Berlin: Springer.Google Scholar
  40. Koudstaal, R. (1987). Water quality management plan north sea: Framework for analysis. Rotterdam: IFIAS Research Series: Coastal Waters n°. 1. Balkema Publ.Google Scholar
  41. Lacerda, L. D., Guerra, T., Castilhos, Z. C., Hatje, V., Canesin, F. P., & Cunha, L. C. (1995). Heavy metals atmospheric inputs from energy generation in Brazil. In Proceedings of the 10th International Conference on Heavy Metals in the Environment. Hamburg.Google Scholar
  42. Lacerda, L. D., & Marins, R. V. (1997). Anthropogenic mercury emissions to the atmosphere in Brazil: The impact of gold mining. Journal of Geochemical Exploration, 58, 223–229.CrossRefGoogle Scholar
  43. Lacerda, L. D., Vaisman, A. G., Maia, L. P., Silva, C. A. R., & Cunha, E. M. S. (2006). Relative importance of nitrogen and phosphorus emissions from shrimp farming and other anthropogenic sources for six estuaries along the NE Brazilian coast. Aquaculture, 253, 433–446.CrossRefGoogle Scholar
  44. Lima, L. C., Morais, J. O., & Souza, M. J. N. (2000). Compartimentação Territorial e Gestão Regional do Ceará. Fortaleza: FUNECE.Google Scholar
  45. Malavolta, E., & Dantas, J. P. (1980). Nutrição e adubação do milho. In E. Paterniani (Ed.), Melhoramento e Produção do Milho no Brasil (pp. 429–479). São Paulo: Fundação Cargill.Google Scholar
  46. Marins, R. V., Freire, G. S. S., Maia, L. P., Lima, J. P. R., & Lacerda, L. D. (2002). Impacts of land-based activities on the Ceará coats, north-eastern Brazil. In L. D. Lacerda, H. H. Kremer, B. Kjerfve, W. Salomons, J. I. Marshall Crossland, & C. J. Crossland (Eds.), South American basins: LOICZ global change assessment and synthesis of river catchment – Coastal sea interaction and human dimensions. LOICZ Reports & Studies.Google Scholar
  47. Marins, R. V., Lacerda, L. D., & Villas Boas, R. C. (1998). Mercury emissions into Sepetiba Bay basin, SE Brazil. Ciência e Cultura, 50, 293–297.Google Scholar
  48. Marins, R. V., Lacerda, L. D., & Villas Boas, R. C. (1999). Relative importance of non-point sources of mercury to an industrialized coastal system, Sepetiba Bay, SE Brazil. In R. Ebinhaus, R. R. Turner, L. D. Lacerda, O. Vasiliev, & W. Salomons (Eds.), Mercury contaminated sites: Characterization, risk assessment and remediation. Berlin: Springer.Google Scholar
  49. Marques, M., Costa, M.F., Mayorga, M. I. D., & Pinheiro, P. R. C. (2004). Water environments: Anthropogenic pressures and ecosystem changes in the Atlantic drainage basins of Brazil. AMBIO, 33, 68–77.CrossRefGoogle Scholar
  50. Martinelli, L. A., Silva, A. M., Camargo, P. B., Moretti, L. R., Tomazelli, A. C., Silva, D. M. L., et al. (2002). Levantamento de cargas orgânicas lançadas nos rios do Estado de São Paulo. Biota Neotropica, 2, 1–18.Google Scholar
  51. Mello, W. Z. (2001). Precipitation chemistry in the coast of the Metropolitan Region of Rio de Janeiro, Brazil. Environmental Pollution, 114, 235–242.CrossRefGoogle Scholar
  52. Mello, W. Z. (2003). Composição química da chuva no litoral da região metropolitana do Rio de Janeiro. In Proceedings of the IX Congresso Brasileiro de Geoquímica, Belém.Google Scholar
  53. Molisani, M. M. (2005). Caracterização das condições físico-químicas dos estuários do Estado do Ceará. Fortaleza: Secretaria de Meio Ambiente do Estado do Ceará, programa Zoneamento Ecológico e Econômico do Litoral do Ceará, 30 p. (http://www.semace.gov.ce/zee/produtos/.
  54. Molisani, M. M., Cruz, A. L. V., & Maia, L. P. (2006). Estimativa da descarga fluvial para os estuários do Estado do Ceará. Arquivos de Ciências do Mar, 39, 53–60.Google Scholar
  55. Molisani, M. M., Moreira, M. O. P., Conceição, R. N., Cruz, A. L. V., Maia &, L. P. (2007). Determinação das Condições de Qualidade das Águas dos Estuários do Estado do Ceará. Arquivos de Ciências do Mar (in press).Google Scholar
  56. Moreira, M. O. P. (1994). Produção do fitoplâncton em um ecossistema estuarino tropical (estuário do rio Cocó, Fortaleza, Ceara). M.Sc. Dissertation, Universidade Federal de Pernambuco, Recife.Google Scholar
  57. Nriagu, J. O. (1989). A global assessment of natural sources of atmospheric trace metals, Nature, 338, 47–49.CrossRefGoogle Scholar
  58. Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134–139.CrossRefGoogle Scholar
  59. NRC (National Research Council) (1993). Soil and water quality: An agenda for agriculture. Washington, DC: National Academy Press.Google Scholar
  60. NRC (National Research Council) (2003). Clean coastal waters: Understanding and reducing the effects of nutrient pollution. Washington, DC: National Academy Press.Google Scholar
  61. Nunes, A. J. P. (2001). Camarões marinhos – Fundamentos da engorda em cativeiro. Panorama da Aqüicultura, 11, 41–49.Google Scholar
  62. Páez-Osuna, F., Gracia, A., Flores-Verdugo, F., Lyle-Fritch, L. P., Alonso-Rodríguez, R., Roque, A., et al. (2003). Shrimp aquaculture and the environment in the Gulf of California ecoregion. Marine Pollution Bulletin, 46, 806–815.CrossRefGoogle Scholar
  63. Páez-Osuna, F., Guerrero-Galván, S. R., & Ruiz-Fernández, A. C. (1999). Discharge of nutrients from shrimp farming to coastal waters of the Gulf of California. Marine Pollution Bulletin, 38, 585–592.CrossRefGoogle Scholar
  64. Pedreira, A. J. (1971). Geologia da faixa costeira de Canavieiras e Belmonte, Ilhéus, BA. EPLAC/CEPEC, Boletim Técnico n°. 13.Google Scholar
  65. Pirrone, N., Allegrini, I., Keeler, G. J., Nriagu, J. O., Rossmann, R., & Robbins, J. A. (1998). Historical atmospheric mercury emissions and deposition in North America compared to mercury accumulation in sedimentary records. Atmospheric Environment, 32, 929–940.CrossRefGoogle Scholar
  66. Pirrone, N., Keeler, G. J., &Nriagu, J. O. (1996). Regional differences in worldwide emissions of mercury to the atmosphere. Atmospheric Environment, 30, 2981–2987.CrossRefGoogle Scholar
  67. RADAM-BRASIL, Ministério das Minas e Energia, Secretaria Geral (1981). Projeto RADAMBRASIL: Programa de Integração Nacional – Levantamento de Recursos Naturais. Folhas SB 24/25 Jaguaribe/Natal, v 23, Rio de Janeiro, p. 744.Google Scholar
  68. Ramalho, J. F. G. P., & Sobrinho, N. M. B. A. (2001). Metais pesados em solos cultivados com cana-de-açúcar pelo uso de resíduos agroindustriais. Floresta & Ambiente, 8, 120–129.Google Scholar
  69. Ramalho, J. F. G. P., Sobrinho, N. M. B. A., & Velloso, A. C. X. (2001). Contaminação da microbacia de Caetés com metais pesados pelo uso de agroquímicos. Pesquisa Agropecuária Brasileira, 35, 1289–1303.Google Scholar
  70. Schlesinger, W. H. (1997). Biogeochemistry: An analysis of global change. San Diego: Academic.Google Scholar
  71. Schlesinger, W. H., Gray, J. T., & Gilliam, F. S. (1982). Atmospheric deposition processes and their importance as sources of nutrients in a Chaparral ecosystem of southern California. Water Resources Research, 18, 623–629.CrossRefGoogle Scholar
  72. SEAGRI (Secretaria de Agricultura, Irrigação e Reforma Agrária do Estado da Bahia) (2003). Cultura da Manga. (SEAGRI), Salvador, Brazil.Google Scholar
  73. Sharpley, A. N., & Rekolainen, S. (1997). Phosphorus in agriculture and its environmental implications. In H. Tunney, O. T. Carton, P. C. Brooker, & A. E. Johnson (Eds.), Phosphorus loss from soil to water. Cambridge: CAB International Press.Google Scholar
  74. Sharpley, A. N., & Syers, J. K. (1979). Phosphorus inputs into a stream draining an agricultural watershed; amounts and relative significance. Water, Air and Soil Pollution, 11, 417–428.CrossRefGoogle Scholar
  75. Sharpley, A. N., & Tunney, H. (2000). Phosphorus research strategies to meet agricultural and environmental challenges of the 21st century. Journal of Environmental Quality, 29, 176–181.CrossRefGoogle Scholar
  76. Silva, L. F. (1996). Solos tropicais: Aspectos pedológicos, ecológicos e de manejo. São Paulo: Terra Brasilis Editora.Google Scholar
  77. Silva, L. F., & Mendonça, J. R. (1971). Parâmetros fisiográficos interpretativos de solos de tabuleiros do sul da Bahia em fotografias aéreas e imagens de radar. Agrotrópica, 1, 71–74.Google Scholar
  78. Silva, E. C., Silva Filho, A. V., & Almeida, M. A. R. (2000). Efeito residual da adubação da batata sobre a produção de matéria seca e exportação de nutrientes do milho verde. Ciência & Agrotecnologia, 24, 509–515.Google Scholar
  79. Silva Filho, E. V., Wasserman, J. C., & Lacerda, L. D. (1998). History of metal inputs recorded on sediment cores from a remote environment. Ciência & Cultura, 50, 374–376.Google Scholar
  80. Smith, R. A., Alexander, R. B., & Wolman, M. G. (1997). Regional interpretation of water monitoring data. Water Resources Research, 33, 2781–2798.CrossRefGoogle Scholar
  81. Tan, P. A., & Wong, A. Y. S. (2000). Soluble trace metals and major ionic species in the bulk deposition and atmosphere in Hong Kong. Water, Air & Soil Pollution, 122, 261–279.CrossRefGoogle Scholar
  82. Tappin, A. D. (2002). An examination of the fluxes of nitrogen and phosphorus in temperate and tropical estuaries: Current estimates and uncertainties. Estuarine, Coastal & Shelf Science, 55, 885–901.CrossRefGoogle Scholar
  83. US EPA (2002). National recommended water quality criteria. EPA-822-R-02-047. Washington, DC: US EPA.Google Scholar
  84. Vaisman, A. G., & Lacerda, L. D. (2003). Estimated heavy metal emissions to the atmosphere due to projected changes in the Brazilian energy generation matrix. Regional Environmental Change, 3, 140–145.CrossRefGoogle Scholar
  85. von Sperling, M. (1996). Introdução a Qualidade das Águas e ao Tratamento de Esgotos. Belo Horizonte: Departamento de Engenharia Hidráulica e Ambiental, UFMG.Google Scholar
  86. Valigura, R. A., Alexander, R. B., Brock, D. H., Castro, H. S., Mayers, T. P., Paerl, H. W., et al. (2000). An assessment of nitrogen inputs to coastal areas with an atmospheric perspective. American Geophysical Union Coastal Estuaries Series, Washington.Google Scholar
  87. Vollenweider, R. A. (1968). Scientific Fundamentals of the Eutrophication of Lakes and Flowing Waters, with Particular Reference to Nitrogen and Phosphorus as Factors in Eutrophication. Organization for Economic Cooperation and Development (OECD), Technical Report DAS/CSI/68/27, Paris, 250p.Google Scholar
  88. ZEE (2005) Zoneamento Ecológico e Econômico da Zona Costeira do Estado do Ceará. Superintendência Estadual de Meio Ambiente, Fortaleza, Brazil, Retrieved November, 26, 2005 from http://www.semace.ce.gov.br.

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Luiz Drude Lacerda
    • 1
  • Mauricio Mussi Molisani
    • 1
  • Daniel Sena
    • 1
  • Luis Parente Maia
    • 1
  1. 1.Instituto de Ciências do MarUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations