Environmental Monitoring and Assessment

, Volume 139, Issue 1–3, pp 61–76 | Cite as

The concentrations, distribution and sources of PAHs in agricultural soils and vegetables from Shunde, Guangdong, China

  • Yong Tao Li
  • Fang Bai Li
  • Jun Jian Chen
  • Guo Yi Yang
  • Hong Fu Wan
  • Tian Bin Zhang
  • Xiao Duo Zeng
  • Jian Ming Liu


The concentrations, distribution and sources of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in 30 agricultural soil and 16 vegetable samples collected from subtropical Shunde area, an important manufacturing center in China. The total PAHs ranged from 33.7 to 350 μg/kg in soils, and 82 to 1,258 μg/kg in vegetables. The most abundant individual PAHs are phenanthrene, fluoranthene, chrysene, pyrene and benzo(b)fluoranthene for soil samples, and anthracene, naphthalene, phenanthrene, pyrene and chrysene for vegetable samples. Average vegetable–soil ratios of total PAHs were 2.20 for leafy vegetables and 1.27 for fruity vegetables. Total PAHs in vegetable samples are not significantly correlated to those in corresponding soil samples. Principal component analyses were conducted to distinguish samples on basis of their distribution in each town, soil type and vegetable specie. Relatively abundant soil PAHs were found in town Jun’an, Beijiao, Chencun, Lecong and Ronggui, while abundant vegetable PAHs were observed in town Jun’an, Lecong, Xingtan, Daliang and Chenchun. The highest level of total PAHs were found in vegetable soil, followed by pond sediment and “stacked soil” on pond banks. The PAHs contents in leafy vegetables are higher than those in fruity vegetables. Some PAH compound ratios suggest the PAHs derived from incomplete combustion of petroleum, coal and refuse from power generation and ceramic manufacturing, and paint spraying on furniture, as well as sewage irrigation from textile industries. Soil PAHs contents have significant logarithmic correlation with total organic carbon, which demonstrates the importance of soil organic matter as sorbent to prevent losses of PAHs.


Agricultural soil Distribution PAHs Source Shunde (China) Vegetable 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bi, X. H., Sheng, G. Y., Peng, P. A., Chen, Y. J., Zhang, Z. Q., & Fu, J. M. (2003). Distribution of particulate- and vapor-phase n-alkanes and polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou, China. Atmospheric Environment, 37, 289–298.CrossRefGoogle Scholar
  2. Camargo, M. C. R., & Toledo, M. C. F. (2003). Polycyclic aromatic hydrocarbons in Brazilian vegetables and fruits. Food Control, 14, 49–53.CrossRefGoogle Scholar
  3. Chen, L. G., Ran, Y., Xing, B. S., Mai, B. X., He, J. H., Wei, X. G., et al. (2005). Contents and sources of polycyclic aromatic hydrocarbons and organochlorine pesticides in vegetable soils of Guangzhou, China. Chemosphere, 60, 879–890.CrossRefGoogle Scholar
  4. Day, P. R. (1965). Particle fractionation and particle-size analysis. In C. A. Black et al. (Eds.), Methods of soil analysis, part I. Agronomy, vol 9 (pp. 545–567). Madison: American Society of Agronomy.Google Scholar
  5. Deng, H. M., Peng, P. A., Huang, W. L., & Song, J. Z. (2006). Distribution and loadings of polycyclic aromatic hydrocarbons in the Xijiang River in Guangdong, South China. Chemosphere, 64, 1401–1411.CrossRefGoogle Scholar
  6. Dyke, P. H., Foan, C., & Fiedler, H. (2003). PCB and PAH releases from power stations and waste incineration processes in the UK. Chemosphere, 50, 469–480.CrossRefGoogle Scholar
  7. Edwards, N. T. J. (1983). Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment—a review. Journal of Environmental Quality, 12, 427–441.CrossRefGoogle Scholar
  8. Fraser, M. P., Gass, G. R., Simoneit, B. R., & Rasmussen, R. A. (1998). Air quality model evaluation data for organics. 5. C6–C22 non-polar and semipolar aromatic compounds. Environmental Science & Technology, 32, 1760–1770.CrossRefGoogle Scholar
  9. Fu, J. M., Sheng, G. Y., Chen, Y., Wang, X. M., Min, Y. S., Peng, P. A., et al. (1997). Preliminary study of organic pollutants in air of Guangzhou, Hong Kong and Macao. In R. P. Eganhouse (Ed.), Molecular markers in environmental geochemistry. ACS symposium series 671 (pp. 164–176). Columbus: American Chemical Society.Google Scholar
  10. Garban, B., Blanchoud, H., Motelay-Massei, A., Chevreuil, M., & Ollivon, D. (2002). Atmospheric bulk deposition of PAHs onto France: Trends from urban to remote sites. Atmospheric Environment, 36, 5395–5403.CrossRefGoogle Scholar
  11. Guangdong Statistical Bureau (2005). Statistical yearbook of Guangdong 2004, Guangdong Statistical Bureau. China Statistical Press, Beijing, P.R. China, (in Chinese).Google Scholar
  12. Gustafsson, Ö., Haghseta, F., Chan, C., MacFarlane, J., & Gschwend, P. M. (1997). Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailability. Environmental Science & Technology, 31, 203–209.CrossRefGoogle Scholar
  13. Jones, K. C., Grimmer, G., Jacob, J., & Johnston, A. E. (1989). Changes in the polynuclear aromatic hydrocarbon (PAH) content of wheat grain and pasture grassland over the last century from one site in the UK. Science of the Total Environment, 78, 117–130.CrossRefGoogle Scholar
  14. Kampe, W. (1989). Organic substances in soils and plants after intensive application of sewage sludge. In A. H. Dirkzwager & P. L.Hermite (Eds.), Sewage treatment and use (pp. 180–185). London: Elsevier Applied Science.Google Scholar
  15. Kim, E. J., Oh, J. E., & Chang, Y. S. (2003). Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil. Science of the Total Environment, 311, 177–189.CrossRefGoogle Scholar
  16. Kipopoulou, A. M., Manoli, E., & Samara, C. (1999). Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environmental Pollution, 106, 369–380.CrossRefGoogle Scholar
  17. Luo, X. J., Chen, S. J., Mai, B. X., Yang, Q. S., Sheng, G. Y., & Fu, J. M. (2006). Polycyclic aromatic hydrocarbons in suspended particulate matter and sediments from the Pearl River Estuary and adjacent coastal areas, China. Environmental Pollution, 139, 9–20.CrossRefGoogle Scholar
  18. Luo, X. J., Mai, B. X., Yang, Q. S., Fu, J. M., Sheng, G. Y., & Wang, Z. X. (2004). Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China. Marine Pollution Bulletin, 48, 1102–1115.CrossRefGoogle Scholar
  19. Mai, B. X., Fu, J. M., Sheng, G. Y., Kang, Y. H., Lin, Z., Zhang, G., et al. (2002). Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China. Environmental Pollution, 117, 457–474.CrossRefGoogle Scholar
  20. Mai, B. X., Fu, J. M., Zhang, G., Lin, Z., Min, Y. S., Sheng, G. Y., et al. (2001). Polycyclic aromatic hydrocarbons in sediments from the Pearl River and estuary, China: Spatial and temporal distribution and sources. Applied Geochemistry, 16, 1429–1445.CrossRefGoogle Scholar
  21. Mehlman, M. A. (1992). Dangerous and cancer-causing properties of products and chemicals in the oil refining and petrochemical industry. VIII. Health effects of motor fuels: carcinogenicity of gasoline-scientific update. Environmental Research, 59, 238–249.CrossRefGoogle Scholar
  22. Meudec, A., Dussauze, J., Jourdin, M., Deslandes, E., & Poupart, N. (2006). Gas chromatographic-mass spectrometric method for polycyclic aromatic hydrocarbon analysis in plant biota. Journal of Chromatography A, 1108, 240–247.CrossRefGoogle Scholar
  23. Nadal, M., Schuhmacher, M., & Domingo, J. L. (2004). Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environmental Pollution, 132, 1–11.CrossRefGoogle Scholar
  24. Nam, J. J., Song, B. H., Eom, K. C., Lee, S. H., & Smith, A. (2003). Distribution of polycyclic aromatic hydrocarbons in agricultural soils in South Korea. Chemosphere, 50, 1281–1289.CrossRefGoogle Scholar
  25. Ophoff, H., Stork, A., Veerkamp, W., & Führ, F. (1996). Volatilization and mineralization of [3-14C]fluoranthene after soil incorporation and soil surface application. International Journal of Environmental Analytical Chemistry, 64, 97–109.CrossRefGoogle Scholar
  26. Pan, B. J., Hong, Y. J., Chang, G. C., Wang, M. T., Cinkotai, F. F., & Ko, Y. C. (1994). Excess cancer mortality among children and adolescents in residential districts polluted by petrochemical manufacturing plants in Taiwan. Journal of Toxicology and Environmental Health, 43, 117–129.CrossRefGoogle Scholar
  27. Rocher, V., Azimi, S., Moilleron, R., & Chebbo, G. (2004). Hydrocarbons and heavy metals in the different sewer deposits in the ‘Le Marais’ catchment (Paris, France): Stocks, distributions and origins. Science of the Total Environment, 323, 107–122.CrossRefGoogle Scholar
  28. Sena, M. M., Frighetto, R. T. S., Valarini, P. J., Tokeshi, H., & Poppi, R. J. (2002). Discrimination of management effects on soil parameters by using principal component analysis: A multivariate analysis case study. Soil & Tillage Research, 67, 171–181.CrossRefGoogle Scholar
  29. Shunde Statistical Bureau (2004). ‘Statistical yearbook of Guangdong 2003’, Shunde statistical bureau. Beijing: China Statistical Press (in Chinese).Google Scholar
  30. Smith, D. J. T., Edelhauser, E. C., & Harrison, R. M. (1995). Polynuclear aromatic hydrocarbon concentrations in road dust and soil samples collected in the United Kingdom and Pakistan. Environment & Technology, 16, 45–53.CrossRefGoogle Scholar
  31. Smith, K. E. C., & Jones, K. C. (2000). Particles and vegetation: implications from the transfer of particle-bound organic contaminants to vegetation. Science of the Total Environment, 246, 207–236.CrossRefGoogle Scholar
  32. Soclo, H. H., Garrigues, P., & Ewald, M. (2000). Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin, 40, 387–396.CrossRefGoogle Scholar
  33. Soil Survey Division Staff (1993). ‘Soil survey manual’, United States department of agriculture, soil conservation service, agricultural handbook 18. Washington, D.C.: U.S. Government Printing Office.Google Scholar
  34. Stalikas, C. D., Chaidou, C. I., & Pilidis, G. A. (1997). Enrichment of PAHs and heavy metals in soils in the vicinity of the lignite-fired power plants of West Macedonia. Science of the Total Environment, 204, 135–146.CrossRefGoogle Scholar
  35. Tao, S., Cui, Y. H., Xu, F. L., Li, B. G., Cao, J., Liu, W. X., et al. (2004). Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Science of the Total Environment, 320, 11–24.CrossRefGoogle Scholar
  36. Thioulouse, J., Chessel, D., Dolédec, S., & Olivier, J. M. (1997). ADE-4: A multivariate analysis and graphical display software. Statistics and Computing, 7, 75–83.CrossRefGoogle Scholar
  37. US EPA (2002). Polycyclic organic matter. Retrieved March 10, 2006, from
  38. Van Brummelen, T. C., Verweij, R. A., Wedzinga, S. A., & Van Gestel, C. A. M. (1996). Enrichment of polycyclic aromatic hydrocarbons in forest soil near a blast furnace plant. Chemosphere, 32, 293–314.CrossRefGoogle Scholar
  39. Wang, X. J., Zheng, Y., Liu, R. M., Li, B. G., Cao, J., & Tao, S. (2003). Medium scale spatial structures of polycyclic aromatic hydrocarbons in the topsoil of Tianjin area. Journal of Environmental Science and Health B, 38, 327–335.CrossRefGoogle Scholar
  40. Wilcke, W. (2000). Polycyclic aromatic hydrocarbons (PAHs) in soil: A review. Journal of Plant Nutrition and Soil Science, 163, 229–248.CrossRefGoogle Scholar
  41. Wilcke, W., Lilienfein, J., Lima, S. D. C., & Zech, W. (1999a). Contamination of highly weathered urban soils in Uberlandia, Brazil. Journal of Plant Nutrition and Soil Science, 162, 539–548.CrossRefGoogle Scholar
  42. Wilcke, W., Muller, S., Kanchanakool, N., Niamskul, C., & Zech, W. (1999b). Polycyclic aromatic hydrocarbons (PAHs) in hydromorphic soils of the tropical metropolis Bangkok. Geoderma, 91, 297–309.CrossRefGoogle Scholar
  43. Wild, S. R., & Jones, K. C. (1992). Polynuclear aromatic hydrocarbons uptake by carrots grown in sludge amended soil. Journal of Environmental Quality, 21, 217–225.CrossRefGoogle Scholar
  44. Xue, W. L., & Warshawsky, D. (2004). Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: A review. Toxicology and Applied Pharmacology, 206, 73–93.CrossRefGoogle Scholar
  45. Yang, C. Y., Chiu, H. F., Tsai, S. S., Chang, C. C., & Chuang, H. Y. (2002). Increased risk of preterm delivery in areas with cancer mortality problems from petrochemical complexes. Environmental Research, 89, 195–200.CrossRefGoogle Scholar
  46. Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515.CrossRefGoogle Scholar
  47. Zhang, H. B., Luo, Y. M., Wong, M. H., Zhao, Q. G., & Zhang, G. L. (2005). Distributions and concentrations of PAHs in Hong Kong soils. Environmental Pollution, 141, 107–114.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Yong Tao Li
    • 2
  • Fang Bai Li
    • 1
  • Jun Jian Chen
    • 1
  • Guo Yi Yang
    • 1
  • Hong Fu Wan
    • 1
  • Tian Bin Zhang
    • 1
  • Xiao Duo Zeng
    • 1
  • Jian Ming Liu
    • 1
  1. 1.Guangdong Key Laboratory of Agricultural Environment Pollution Integrated ControlGuangdong Institute of Eco-Environment and Soil ScienceGuangzhouPeople’s Republic of China
  2. 2.College of Natural Resources and EnvironmentSouth China Agricultural UniversityGuangzhouPeople’s Republic of China

Personalised recommendations