Environmental Monitoring and Assessment

, Volume 136, Issue 1–3, pp 267–275 | Cite as

Heavy metals in water, sediment and tissues of Liza saliens from Esmoriz–Paramos lagoon, Portugal

  • C. Fernandes
  • A. Fontaínhas-Fernandes
  • D. Cabral
  • M. A. Salgado


Esmoriz–Paramos lagoon is an ecosystem of great ecological importance that is located on the northwest coast of Portugal and has been degraded as a result of industrial and anthropogenic activities. Concentrations of heavy metals (Cr, Cu, Pb and Zn) were measured in water, sediment and in tissues (liver and muscle) of Liza saliens, which is the dominant fish from the lagoon. Comparisons between metal concentrations in water and sediments were made with those in tissues of fish caught at the lagoon. Metals in water were quantified predominantly bound to particulate and equalled or exceeded the limit of chronic reference values. Metal concentrations in sediments varied among sampled sites. The relative order of concentrations was “Zn > Cu ∼ Pb > Cr” the same pattern observed for metals in water. Metals in fish tissues showed higher concentrations in liver (262 mg Cu·Kg−1 and 89 mg Zn·Kg−1) than in muscle (<3 mg Cu·Kg−1 and 26 mg Zn·Kg−1), while Pb and Cr were not detected. These results suggest that Cu and Zn are the metals of major concern in the lagoon. Mullet detritivorous feeding habits, bioaccumulation pattern and the high sediment metals concentrations relative to the water suggest that sediments can be the most important source of contamination in this ecosystem. The positive relationship found between Cu in liver and fish length demonstrates that time of exposure is a crucial factor in bioaccumulation. Condition indices (K and HSI) in mullets from the lagoon were higher compared to mullets from sea, suggesting abnormal condition in the lagoon population. We conclude that metals chronic exposure in the lagoon can impose considerable fish stress. The results also show that the lagoon is an area of environmental concern.


Esmoriz–Paramos Heavy metals Sediment Water Fish 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almeida, C. S. D. (1998). Estudo de pesticidas na Barrinha de Esmoriz-Lagoa de Paramos. Desenvolvimento do método de extracção de triazinas em fase sólida e identificação por cromatografia líquida de alta eficiência com detecção por Diodo Array. MSc thesis, ICBAS, Oporto University.Google Scholar
  2. Arnold, H., Pluta, H. J., & Braunbeck, T. (1995). Simultaneous exposure of fish to endosulfan and disulfoton in vivo: Ultrastructural, stereological and biochemical reactions in hepatocytes of male rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 33, 17–43.CrossRefGoogle Scholar
  3. Blasco, J., Rubio, J. A., Forja, J., Gómez-Parra, A., & Establier, R. (1998). Heavy metals in some fishes of the Mugilidae family from salt-ponds of Cadiz bay SW Spain. Ecotoxicology Environmental Research, (2), 71–78.Google Scholar
  4. Bryan, G. H., & Langston, W. J. (1992). Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: A review. Environmental Pollution Bulletin, 48, 405–408.Google Scholar
  5. Censi, P., Spoto, S. E., Saiano, F., Sprovieri, M., Mazzola, S., Nardone, G., et al. (2006). Heavy metals in coastal water systems. A case study from the northwestern Gulf of Thailand. Chemosphere, 64, 1167–1176.CrossRefGoogle Scholar
  6. Cesar, A., Choueri, R. B., Riba, I., Morales-Caselles, C., Pereira, C. D. S., Santos, A. R., et al. (2006). Comparative sediment quality assessment in different littoral ecosystems from Spain (Gulf of Cadiz) and Brazil (Santos and São Vicente estuarine system). Enviromental International (in press).Google Scholar
  7. Chapman, P. M., Wang, F., Janssen, C. R., & Kamunde, R. C. N. (2003). Conducting ecological risk assessments of inorganic metals and metalloids: Current status. Human Ecological Risk Assessment, 9(4), 641–697.CrossRefGoogle Scholar
  8. Chattopadhyay, B., Chatterjee, A., & Mukhopadhyay, S. K. (2002). Bioaccumulation of metals in the East Calcutta wetland ecosystem. Aquatic Ecosystem Health Management, 5, 191–203.CrossRefGoogle Scholar
  9. Chen, M.-H., & Chen, C.-Y. (1999). Bioaccumulation of sediment-bound heavy metals in grey mullet, Liza macrolepis. Marine Pollution Bulletin, (39), 239–244.Google Scholar
  10. Dethloff, G. M., & Schmitt, C. J. (2000). Condition factor and organo-somatic índices. U.S. Geological Survey, Information and Technology Report USGS/BRD-2000-0005.Google Scholar
  11. Eastwood, S., & Couture, P. (2002). Seasonal variations in condition and liver metal concentrations of yellow perch (Perca flavescens) from a metal-contaminated environment. Aquatic Toxicology, 58, 43–56.CrossRefGoogle Scholar
  12. Eimers, R. D., Evans, R. D., & Welbourn, P. M. (2001). Cadmium accumulation in the freshwater isopod Asellus racovitzai: The relative importance of solute and particulate sources at trace concentrations. Environmental Pollution, 111, 247–253.CrossRefGoogle Scholar
  13. Fernandes, C., Fontaínhas-Fernandes, A., Peixoto, F., & Salgado, M. A. (2007). Bioaccumulation of heavy metals in Liza saliens from the Esmoriz–Paramos coastal lagoon, Portugal. Ecotoxicology and Environmental Safety 66, 426–431.CrossRefGoogle Scholar
  14. Ferreira, A. M., Cortesão, C., Castro, O., & Vale, C. (1990). Accumulation of metals and organochlorines in tissues of the oyster Crassostrea angulata from the Sado estuary. Science of the Total Environment, 97/98, 627–639.CrossRefGoogle Scholar
  15. Ferreira, M., Moradas-Ferreira, P., & Reis-Henriques, M. A. (2005). Oxidative stress biomarkers in two resident species, mullet (Mugil cephalus) and flounder (Platichthys flesus), from a polluted site in River Douro Estuary, Portugal. Aquatic Toxicology, 71, 39–48.CrossRefGoogle Scholar
  16. Ferreira, M., Moradas-Ferreira, P., & Reis-Henriques, M. A. (2006). The effect of long-term depuration on phase I and phase II biotransfomation in mullets (Mugil cephalus) chronically exposed to pollutants in River Douro Estuary, Portugal. Marine Environmental Research, 61, 326–338.CrossRefGoogle Scholar
  17. Figueiredo-Fernandes, A., Fontaínhas-Fernandes, A., Peixoto, F., Rocha, E., & Reis-Henriques, M. A. (2006). Effects of gender and temperature on oxidative stress enzymes in Nile tilapia Oreochromis niloticus exposed to paraquat. Pesticide Biochemistry and Physiology, 85, 97–103.CrossRefGoogle Scholar
  18. Forrest, B. J. (2000). Collecting water-quality samples for dissolved metals-in-water. Compiled by Forrest B.J. USEPA, Region 6.Google Scholar
  19. Gadagbui, B. K. M., & Goksøyr, A. (1996). CYP1A and other biomarker responses to effluents from a textile mill in the Volta river (Ghana) using caged tilapia (Oreochromis niloticus) and sediment-exposed mudfish (Clarias anguillaris). Biomarkers, 1, 252–261.CrossRefGoogle Scholar
  20. Ghrefat, H., & Yusuf, N. (2006). Assessing Mn, Fe, Cu, Zn, and C. Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan. Chemosphere, 65, 2114–2121.CrossRefGoogle Scholar
  21. HMSO (1986). Methods for the determination of metals in soils, sediments and sewage sludge and plants by hydrochloric-nitric acid digestion, with a note on the determination of the insoluble metal contents. Her Majesty’s Stattionery Ofice, London.Google Scholar
  22. Joyeux, J.-C., Filho, E. A. C., & Jesus, H. C. (2004). Trace metal contamination in estuarine fishes from Vitória Bay, ES, Brazil. Brazilian Archives of Biology and Technology, 47(5), 765–774.CrossRefGoogle Scholar
  23. Karadede, H., Oymak, S. A., & Ünlü, E. (2004). Heavy metals in mullet, Liza abu, and catfish, Silurus triostegus, from the Atatürk Dam lake (Euphrates), Turkey. Environment International, (30), 183–188.Google Scholar
  24. Kwon, Y.-T., & Lee, C.-W. (2001). Sediment metal speciation for the ecological risk assessment. Analyical Science, 17, 1015–1017.CrossRefGoogle Scholar
  25. Laflamme, J.-S., Couillard, Y., Campbell, P. G. C., & Hontela, A. (2000). Interrenal metallothionein and cortisol secretion in relation to Cd, Cu and Zn exposure in yellow perch, Perca flavescens, from Abitibi lakes. Canadian Journal of Fisheries Aquatic Sciences, 57, 1692–1700.CrossRefGoogle Scholar
  26. MacFarlane, G. B., & Burchettt, M. D. (2000). Cellular distribution of Cu, Pb, and Zn in the Grey Mangrove Avicemnia marina (Forsk.). Vierh Aquatic Botanic, 68, 45–59.CrossRefGoogle Scholar
  27. Mansour, S. A., & Sidky, M. M. (2002). Ecotoxicological studies. 3. Heavy metals contaminating water and fish from Fayoum Governorate, Egypt. Food Chemistry, 78, 15–22.CrossRefGoogle Scholar
  28. Mansour, S. A., & Sidky, M. M. (2003). Ecotoxicological studies. The first comparative study between Lake Qarun and Wadi El-Rayan wetland (Egypt) with respect to contamination of their major components. Food Chemistry, 82, 181–189.CrossRefGoogle Scholar
  29. Marcovecchio, J. E. (2004). The use of Micropogonias furnieri and Mugil liza as bioindicators of heavy metals pollution in La Plata river estuary, Argentina. Science of the Total Environment, (323), 219–226.Google Scholar
  30. Mariín-Guirao, L., Cesar, A., Marín, A., Lloret, J., & Vita, R. (2005). Establishing the ecological status of soft-bottom mining-impacted coastal waterbodies in the scope of the Water Framework Directive. Marine Pollution Bulletin, 50, 374–387.CrossRefGoogle Scholar
  31. Martin, L. K., & Black, M. C. (1996). Biomarker assessment of the effects of petroleum refinery contamination on channel catfish. Ecotoxicology and Environmental Safety, 33, 81–87.CrossRefGoogle Scholar
  32. Mayer, F. L., Versteeg, D. G., McKee, M. J., Folmar, L. C., Graney, R. L., McCume, D. C., et al. (1992). Metabolic products as biomarkers. In R. J. Hugget, R. A. Kimerly, P. M. Mehrle, & H. L. Bergman (Eds.), Biomarkers: Biochemical, physiological and histological markers of anthropogenic stress (pp. 5–86). Chelsea: Lewis.Google Scholar
  33. Mendil, D., & Uluözlö, Ö. D. (2007). Determination of trace metal levels in sediment and five fish species from lakes in Tokat, Turkey. Food Chemistry, 101, 739–745.CrossRefGoogle Scholar
  34. Miller, G. G., Sweet, L. I., Adams, J. V., Omann, G. M., Passino-Reader, D. & Meter, P. G. (2002). In vitro toxicity and interactions of environmental contaminants (Arochlor 125 and mercury) and immunomodulatory agents (lipopolysaccharidae and cortisol) on thymocytes from lake trout (Salvelinus namaycus). Fish and Shellfish Immunology, 13, 11–26.CrossRefGoogle Scholar
  35. Minos, G., Katselis, G., Kaspiris, P., & Ondrias, I. (1995). Comparison of the change in morphological pattern during the growth in length of the grey mullets Liza ramada and Liza saliens from Western Greece. Fisheries Research, 23, 143–155.CrossRefGoogle Scholar
  36. Newsted, J. L., & Giesy, J. P. (1993). Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD) on the epidermical growth receptor in hepatic plasma membranes of rainbow trout (Oncorhynchus mykiss). Toxicology Applied Pharmacology, 119, 41–51.CrossRefGoogle Scholar
  37. Norris, D. O., Camp, J. M., Maldonado, T. A., & Woodling, J. D. (2000). Some aspects of hepatic function in feral brown trout, Salmo trutta, living in metal contaminated water. Comparative Biochemistry and Physiology, 127, 71–78.CrossRefGoogle Scholar
  38. Plette, A. C. C., Nederlof, M. M., Temminghoff, E. J. M., & Van Riemsdijk, W. H. (1999). Bioavailability of heavy metals in terrestrial and aquatic systems: A quantitative approach. Environmental Toxicological Chemistry, 18(9), 1882–1890.CrossRefGoogle Scholar
  39. Rajotte, J., Pyle, G., & Couture, P. (2003). Indicators of chronic metal stress in wild yellow perch from metal-contaminated environments. Conference Presentations, Mining and Environment, 28th Annual Meeting.Google Scholar
  40. Romeo, M., Siau, Y., Sidoumou, Z., & Gnassia-Barelli, M. (1999). Heavy metal distribution in different fish species from the Mauritânia coast. Science of the Total Environment, 232, 169–175.CrossRefGoogle Scholar
  41. Sekhar, K. C., Chary, N. S., Kamala, C. T., Raj, D. S. S., & Rao, A. S. (2003). Fractionation studies and bioaccumulation of sediment-bound heavy metals in Kolleru Lake by edible fish. Environment International, 29, 1001–1008.CrossRefGoogle Scholar
  42. SIMRIA (2002). Avaliação da Contaminação da Barrinha de Esmoriz. International Report, Saneamento integrado dos municípios da Ria, Aveiro, Portugal.Google Scholar
  43. Stephensen, E., Svavarsson, J., Sturve, J., Ericon, E., Adolfson-Erici, M., & Förlin, E. (2000). Biochemical indicators of pollution exposure in shorthorn sculpin (Myoxocephalus scorpius), caught in four harbours on the sothwest coast of Iceland. Aquatic Toxicology, 48, 431–442.CrossRefGoogle Scholar
  44. USEPA (1999). Biological assessment of the Idaho water quality standards for numeric water quality criteria for toxic pollutants. Washington, D.C.Google Scholar
  45. Van der Oost, R., Lopes, S. C. C., Komen, H., Satumalay, K., van den Bos, R., Heida, H., et al. (1998). Assessment of environmental quality and inland water pollution using biomarker responses in caged carp (Cyprinius carpio): Use of a bioactivation:detoxication ratio as biotransformation index (BTI). Marine Environmental Pollution, 46, 315–319.Google Scholar
  46. Von Gunten, H. R., Sturm, M., & Moser, R. N. (1997). 200-Year recorded of metals in lake sediments and natural background concentrations. Environmental Science and Technology, 31(8), 2193–2197.CrossRefGoogle Scholar
  47. Yilmaz, A. B. (2003). Levels of heavy metals (Fe, Cu, Ni, Cr, Pb and Zn) in tissue of Mugil cephalus and Trachurus mediterraneus from Iskenderun Bay, Turkey. Environmental Research, (92), 277–281.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • C. Fernandes
    • 1
  • A. Fontaínhas-Fernandes
    • 2
  • D. Cabral
    • 3
  • M. A. Salgado
    • 4
  1. 1.ESA – Escola Superior Agrária, Instituto Politécnico de BragançaCIMO – Centro de Investigação de Montanha, Campus de Santa ApolóniaBragançaPortugal
  2. 2.UTAD – Universidade de Trás-os-Montes e Alto DouroCETAV – Centro de Estudos Tecnológicos, do Ambiente e da VidaVila RealPortugal
  3. 3.ESA – Escola Superior Agrária, Instituto Politécnico de BragançaCIMO – Centro de Investigação de Montanha, Campus de Santa ApolóniaBragançaPortugal
  4. 4.ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Universidade do PortoCIIMAR – Centro Interdisciplinar de Investigação Marinha e AmbientalPortoPortugal

Personalised recommendations