Advertisement

Water quality assessment at Ömerli Dam using remote sensing techniques

  • Erhan Alparslan
  • Cihangir Aydöner
  • Vildan Tufekci
  • Hüseyin Tüfekci
Article

Abstract

Water quality at Ömerli Dam, which is a vital potable water resource of Istanbul City, Turkey was assessed using the first four bands of Landsat 7-ETM satellite data, acquired in May 2001 and water quality parameters, such as chlorophyll-a, suspended solid matter, secchi disk and total phosphate measured at several measurement stations at Ömerli Dam during satellite image acquisition time and archived at the Marine Pollution and Ecotoxicology laboratory of the Marmara Research Center, where this study was carried out. Establishing a relationship between this data, and the pixel reflectance values in the satellite image, chlorophyll-a, suspended solid matter, secchi disk and total phosphate maps were produced for the Ömerli Dam.

Keywords

Water quality parameters Remote sensing In situ measurements Landsat satellite images Regression analysis 

References

  1. Bartholomew, P. (2002). Mapping and modeling chlorophyll-a concentrations in the Lake Manassas reservoir using landsat. M.S. Thesis, Faculty of Virginia Polytechnic Institute and State University.Google Scholar
  2. Bhavsar, P. (1984). Review of remote sensing applications in hydrology and water sources management in India. Advances in Space Research, 4(11), 193–200.CrossRefGoogle Scholar
  3. Boland, D. H. P. (1976). Trophic classification of lakes using landsat-1 (ERTS-1) multispectral scanner data. Report no. EPA-600/3-76-037. Corvallis, OR: U.S. Environmental Protection Agency, Corvallis Environmental Research Laboratory.Google Scholar
  4. Brown, D., Warwick, R., Cavalier, L., & Roller, M. (1977a). The persistence and condition of Douglas County, Minnesota lakes. Report no. 5021. Minneapolis, MN: Minnesota Land Management Information System, Center for Urban and Regional Affairs, University of Minnesota.Google Scholar
  5. Brown, D., Warwick, R., & Skaggs, R. (1977b). Reconnaissance analysis of lake condition in east–central Minnesota. Report no. 5022 (19 p.). Minneapolis, MN: Minnesota Land Management Information System, Center for Urban and Regional Affairs, University of Minnesota.Google Scholar
  6. Büttner, G., Korandi, M., Gyömörei, A., Köte, Z., & Szabo, G. (1987). Satellite remote sensing of inland waters: Lake Balaton and reservoir Kisköre. Acta Astronautica, 15(6/7), 305–311.CrossRefGoogle Scholar
  7. Chavez, P. S. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24, 459–479.CrossRefGoogle Scholar
  8. Cox, R. M., Forsythe, R. D., Vaughan, G. E., & Olmsted L. L. (1998). Assessing water quality in the Catawba River reservoirs using Landsat thematic mapper satellite data. Lake and Reservoir Management, 14, 405–416.CrossRefGoogle Scholar
  9. Dekker, A. G., & Peters, S. W. M. (1993). The use of the Thematic Mapper for the analysis of eutrophic lakes: A case study in the Netherlands. International Journal of Remote Sensing, 14, 799–821.CrossRefGoogle Scholar
  10. Kloiber, S. M., Anderle, T., Brezonik, P. L., Olmanson, L. G., Bauer, M. E., & Brown, D. (2000). Trophic state assessment of lakes in the Twin Cities (Minnesota, USA) region by satellite imager. Archiv fur Hydrobiologie. Special Issues Advance Limnology, 55, 137–151.Google Scholar
  11. Kloiber, S. M., Brezonik, P. L., Olmanson, L. G., & Bauer, M. E. (2002). A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sensing of Environment, 82, 38–47.CrossRefGoogle Scholar
  12. Landsat 7 Science Data Users Handbook (Sections 11.3.1 and 11.3.2). Cited December 6, 2006, at http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter11/chapter11.html.
  13. Lathrop, R. G. (1992). Landsat thematic mapper monitoring of turbid inland water quality. Photogrammetric Engineering and Remote Sensing, 58, 465–470.Google Scholar
  14. Lathrop, R. G., & Lillesand, T. M. (1986). Utility of thematic mapper data to assess water quality in southern Green Bay and west–central Lake Michigan. Photogrammetric Engineering and Remote Sensing, 52, 671–680.Google Scholar
  15. Lathrop, R., Lillesand, T. M., & Yandell, B. (1991). Testing the utility of simple multi-date thematic mapper calibration algorithms for monitoring turbid inland waters. International Journal of Remote Sensing, 12, 204–206.CrossRefGoogle Scholar
  16. Lillesand, T. M., Johnson, W. L., Deuell, R. L., Lindstrom, O. M., & Meisner, D. E. (1983). Use of Landsat data to predict the trophic state of Minnesota lakes. Photogrammetric Engineering and Remote Sensing, 49, 219–229.Google Scholar
  17. Olmanson, L. (1997). Satellite remote sensing of the trophic state conditions of the lakes in the Twin Cities metropolitan area. M.S. Paper, Graduate Program in Water Resources Science, University of Minnesota, St. Paul, MN.Google Scholar
  18. Richter, R. (1996). Atmospheric correction of satellite data with haze removal including a haze/clear transition region. Computers and Geosciences, 22(6), 675–681.CrossRefGoogle Scholar
  19. Rice, D. P., & Odenweiler, J. B. (1990). External effects correction of Landsat Thematic Mapper data. ISPRS Journal of Photogrammetry and Remote Sensing, 44, 355–368.CrossRefGoogle Scholar
  20. Scarpace, F. L., Holmquist, K. W., & Fisher, L. T. (1979). Landsat analysis of lake quality. Photogrammetric Engineering and Remote Sensing, 45(5), 623–633.Google Scholar
  21. Witzig, A. S., & Whitehurst, C. A. (1981). Current use and technology of Landsat MSS data for lake trophic classification. Water Resources Bulletin, 17, 962–970.Google Scholar
  22. Wynne, R. (2002). Class notes from remote sensing of natural resources, Forestry 5204. Blacksburg, VA: Virginia Polytechnic Institute and State University.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Erhan Alparslan
    • 1
  • Cihangir Aydöner
    • 1
  • Vildan Tufekci
    • 1
  • Hüseyin Tüfekci
    • 1
  1. 1.Earth and Marine Sciences InstituteScientific and Technological Research Council of Turkey Marmara Research CenterGebzeTurkey

Personalised recommendations