Environmental Monitoring and Assessment

, Volume 134, Issue 1–3, pp 199–210 | Cite as

Crown condition dynamics of oak in southern Sweden 1988’999

  • Igor Drobyshev
  • Stefan Anderson
  • Kerstin Sonesson


Crown defoliation of oak (Quercus robur and Q. petraea) was analysed in 808 trees during three forest condition surveys (1988, 1993, and 1999) in the southern Sweden. From 1988 to 1999 crown defoliation increased by more than 20%. Changes in crown defoliation were related to the pH in the upper 20’0 cm of the mineral soils, which was closely connected to other measures of soil fertility (cation exchange capacity, CEC and C/N ratio). Trees growing on soils with a high pH (< 4.00, in BaCl2 filtrate), high CEC and low C/N ratio had significantly lower crown defoliation than trees growing on more acid soils (pH <4.00), indicating that less favourable soil conditions may further enhance oak decline. Age did not differentiate trees with respect to crown defoliation, indicating that decline in crown condition was not due to an age-related increase in crown transparency. Considering only trees younger than 100 years, a significant interaction was observed between changes in crown defoliation and soil pH. Trees younger than 100 years old growing on more acidic soils had a greater increase in crown transparency than trees on more basic soils between 1988 and 1999. Trees <00 years old had significantly higher defoliation on more acidic than on more basic soils, however defoliation dynamics of these trees over 1988’9 was not related to soil acidity. Two biotic agents (insect and fungal leaf infections) evaluated in this study did not prove to be important drivers of defoliation dynamics.


Age structure Biotic factors Climate variation Crown defoliation Environmental monitoring European hardwoods Forest condition Oak decline Soil pH Acidification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahti, T., Hämet-Ahti, L., & Jalas, J. (2004). Vegetation zones and their sections in northwestern Europe. Annales Botanici Fennici, 5, 169’11.Google Scholar
  2. Anon (1997). Forest condition in Europe. UN:ECE & EC. Report on the 1996 Survey. Geneva, Brussels. ISSN 1020’729. 164 pp.Google Scholar
  3. Anon (2005). The condition of forests in Europe. 2005 Executive Report. UNECE, Geneva. ISSN 1020’87X. 32 pp.Google Scholar
  4. Bakker, M. R. (1998). Fine roots of pedunculate oak (Quercus robur L.) in the Netherlands seven years after liming. Netherlands Journal of Agricultural Science, 46, 209’22.Google Scholar
  5. Balci, Y., & Halmschlager, E. (2003). Incidence of Phytophthora species in oak forests in Austria and their possible involvement in oak decline. Forest Pathology, 33, 157’74.CrossRefGoogle Scholar
  6. Balsberg, A.-M. (1990). Handledning i kemiska metoder vid växtekologiska arbeten. Meddelanden från Växtekologiska avd. Lunds universitet, 52. Lund. 58 p. [In Swedish].Google Scholar
  7. Barklund, P., & Wahlström, K. (1998). Death of oaks in Sweden since 1987. In Disease/Environment Interaction in Forest Decline. Proceedings of a workshop of the working party Disease/Environment Interactions in Forest Decline IUFRO 7.02.06. 16th March’1 March 1998. Vienna, Austria: Federal Forest Research Centre, 193.Google Scholar
  8. Berger, T. W., & Glatzel, G. (1994). Deposition of atmospheric constituents and its impact on nutrient budgets of oak forests (Quercus petraea and Quercus robur) in Lower Austria. Forest Ecology and Management, 70, 183’93.CrossRefGoogle Scholar
  9. Blaschke, H. (1994). Decline symptoms on roots of Quercus robur. European Journal of Forest Pathology, 24, 386’98.CrossRefGoogle Scholar
  10. Camy, C., Delatour, C., & Marcais, B. (2003). Relationships between soil factors, Quercus robur health, Collybia fusipes root infection and Phytophthora presence. Annals of Forest Science, 60, 419’26.CrossRefGoogle Scholar
  11. De Vries, W., Vel, E., Reinds, G. J., Deelstra, H., Klap, J. M., Leeters, E. E. J. M., et al. (2003). Intensive monitoring of forest ecosystems in Europe ’1. Objectives, set-up and evaluation strategy. Forest Ecology and Management, 174, 77’5.CrossRefGoogle Scholar
  12. Demchik, M. C., & Sharpe,W. E. (2000). The effect of soil nutrition, soil acidity and drought on northern red oak (Quercus rubra L.) growth and nutrition on Pennsylvania sites with high and low red oak mortality. Forest Ecology and Management, 136, 199’07.CrossRefGoogle Scholar
  13. Dobbertin, M. (2005). Tree growth as indicator of tree vitality and of tree reaction to environmental stress: A review. European Journal of Forest Research, 124, 319’33.CrossRefGoogle Scholar
  14. Dobbertin, M., & Brang, P. (2001) Crown defoliation improves tree mortality models. Forest Ecology and Management, 141, 271’84.CrossRefGoogle Scholar
  15. Drobyshev, I., & Linderson, H., & Sonesson, K. (2007). Temporal mortality pattern of penduculate oaks in southern Sweden. Dendrochronologia, 24, 97’08.CrossRefGoogle Scholar
  16. Eichhorn, J., Icke, R., Isenberg, A., Paar, U., & Schonfelder, E. (2005). Temporal development of crown condition of beech and oak as a response variable for integrated evaluations. European Journal of Forest Research, 124, 335’47.CrossRefGoogle Scholar
  17. Eriksson, E., Karltun, E., & Lundmark, J. E. (1992). Acidification of forest soils in Sweden. Ambio, 21, 150’54.Google Scholar
  18. Fellner, R., & Peskova, V. (1995). Effects of industrial pollutants on ectomycorrhizal relationships in temperate forests. Canadian Journal of Forest Research, 73, 1310’315.Google Scholar
  19. Fredén, C. (2002). Geology. The national atlas of Sweden. Stockholm: SNA Förlag.Google Scholar
  20. Gaertig, T., Schack-Kirchner, H., Hildebrand, E. E., & von Wilpert, K. (2002). The impact of soil aeration on oak decline in southwestern Germany. Forest Ecology and Management, 159, 15’5.CrossRefGoogle Scholar
  21. Ghosh, S., Innes, J. L., & Hoffmann, C. (1995). Observer variation as a source of error in assessments of crown condition through time. Forest Science, 41, 235’54.Google Scholar
  22. Göransson, H., Rosengren, U., Wallander, H., Fransson, A. M., & Thelin, G. (2006). Nutrient acquisition from different soil depths by pedunculate oak. Trees, 20, 292’98.CrossRefGoogle Scholar
  23. Göttlein, A., Heim, A., & Matzner, E. (1999). Mobilization of aluminium in the rhizosphere soil solution of growing tree roots in an acidic soil. Plant and Soil, 211, 41’9.CrossRefGoogle Scholar
  24. Greig, B. (1992). Occurrence of decline and dieback of oak in Great Britain. Research information note, 214. Alice Holt, Surrey: Forestry Commission.Google Scholar
  25. Halmschlager, E., & Kowalski, T. (2004). The mycobiota in nonmycorrhizal roots of healthy and declining oaks. Canadian Journal of Botany, 82, 1446’458.CrossRefGoogle Scholar
  26. Hansen, E., & Delatour, C. (1999). Phytophthora species in oak forests of north-east France. Annals of Forest Science, 56, 539’47.CrossRefGoogle Scholar
  27. Hartmann, G. (1996). Ursachenanalyse des Eichensterbens in Deutschland-Versuch einer Synthese bisheriger Befunde. In Mitteilungen aus der biologischen Bundesanstalt für Land- und Forstwirtschaft, Berlin-Dahlem (pp. 125’51). Berlin: Parey Buchverlag.Google Scholar
  28. Holes, L., & Berki, I. (1988). Lokale industrielle Emission und Waldschäden in Nordungarn. III. Gestaltung des Nebenwurzelwerkes und der Mykorrhiza-Beziehungen bei gesunden und kranken Bäumen. Acta Botanica Hungarica, 34, 39’9.Google Scholar
  29. Jönsson, U. (2004). Phytophthora species and oak decline ’can a weak competitor cause significant root damage in a nonsterilized acidic forest soil? New Phytologist, 162, 211’22.CrossRefGoogle Scholar
  30. Jönsson, U., Jung, T., Sonesson, K., & Rosengren, U. (2005). Relationships between health of Quercus robur, occurrence of Phytophthora species and site conditions in southern Sweden. Plant Pathology, 54, 502’11.CrossRefGoogle Scholar
  31. Jung, T., Blaschke, H., & Osswald, W. (2000). Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease. Plant Pathology, 49, 706’18.CrossRefGoogle Scholar
  32. Katzensteiner, K., Glatzel, G., & Kazad, M. (1992). Nitrogen-induced nutritional imbalances ’a contributing factor to Norway spruce decline in the Bohemian Forest (Austria). Forest Ecology and Management, 51, 29’2.CrossRefGoogle Scholar
  33. Klugmann, K., & Roloff, K. (1999). Ökophysiologische Bedeutung von Zweigabspürngen (Kladoptosis) unter besonderer Berücksichtigung der Symptomatologie von Quercus robur L. Forstw. Cbl., 118, 271’86.CrossRefGoogle Scholar
  34. Kovacs, G., Pausch, M., & Urban, A. (2000). Diversity of ectomycorrhizal morphotypes and oak decline. Phyton, 40, 109’16.Google Scholar
  35. Landmann, G., Becker, M., Delatour, C., Dreyer, E., & Dupouey, J. L. (1993). Oak dieback in France: Historical and recent records, possible causes, current investigations. In Bayerische Akademie der Wissenschaften. Rundgespräche der Kommission fur Ökologie (Ed.), Zustand undGefährdung der Laubwälder 5 (pp. 97’13). Munchen, Germany: F. Pfeil.Google Scholar
  36. Mitscherlich, G. (1978). Wald, Wachstum und Umwelt, vol. 1. J.D. Frankfurt am Main: Sauerländer’s Verlag.Google Scholar
  37. Nilsson, N. E. (1996). Forests. Swedish National Atlas. Stockholm: SNA Förlag.Google Scholar
  38. Odén, S. (1968). Nederbördens och luftens försurning ’dess orsaker, förlopp och verkan i olika mijöer. Statens Naturvetenskapliga Forskningsråd, Ekologikomiteen, Bulletin No. 1, 1’7, (in Swedish).Google Scholar
  39. Osipov, V. V. (1989). Stand growth conditions in the Central Russian forest-steppe zone. In The state of oak forests in the forest-steppe zone (pp. 5’8). Moscow: Nauka Publishing House (in Russian).Google Scholar
  40. Osipov, V. V., & Selochnik, N. N. (1989). The state of oak forests in the Central Russian forest-steppe after materials of reconnoitring inspections in 1984’987. In The state of oak forests in the forest-steppe zone (pp. 199’05). Moscow: Nauka Publishing House, (in Russian).Google Scholar
  41. Parr, T. W., Ferretti, M., Simpson, I. C., Forsius, M., & Kovacs-Lang, E. (2002). Towards a long-term integrated monitoring programme in Europe: Network design in theory and practice. Environmental Monitoring and Assessment, 78, 253’90.CrossRefGoogle Scholar
  42. Pedersen, B. S. (1998). The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology, 79, 79’3.CrossRefGoogle Scholar
  43. Persson, H., & Majdi, H. (1995). Effects of acid deposition on tree roots in Swedish forest stands. Water, Air and Soil Pollution, 85, 1287’292.CrossRefGoogle Scholar
  44. Pilcher, J., & Gray, S. (1982). The relationships between oak tree growth and climate in Britain. Journal of Ecology, 70, 297’04.CrossRefGoogle Scholar
  45. Przybyl, K., & Pukacka, S. (1995). Root characterization of declining Quercus robur L. trees. Phytopathologia Polonica, 22, 125’32.Google Scholar
  46. Raab, B., & Vedin, H. (1995). Klimat, sjöar och vattendrag. Sveriges National Atlas. Stockholm: SNA Förlag, (in Swedish).Google Scholar
  47. Raben, G., Andreae, H., & Meyer-Heisig, M. (2000). Long-term acid load and its consequences in forest ecosystems of Saxony (Germany). Water, Air and Soil Pollution, 122, 93’03.CrossRefGoogle Scholar
  48. Rothe, A., & Binkley, D. (2001). Nutritional interactions in mixed species forests: A synthesis. Canadian Journal of Forest Research, 31, 1855’870.CrossRefGoogle Scholar
  49. Rust, S., & Roloff, A. (2002). Reduced photosynthesis in old oak (Quercus robur): The impact of crown and hydraulic architecture. Tree Physiology, 22, 597’01.Google Scholar
  50. Seidling, W., & Mues, V. (2005). Statistical and geostatistical modelling of preliminarily adjusted defoliation on an European scale. Environmental Monitoring and Assessment, 101, 223’47.CrossRefGoogle Scholar
  51. Selochnik, N. N. (1989). On the oak forest decline causes. In The state of oak forests in the forest-steppe zone (pp. 48’4). Moscow: Nauka Publishing House, (in Russian).Google Scholar
  52. Siwecki, R., & Ufnalski, K. (1998). Review of oak stand decline with special reference to the role of drought in Poland. European Journal of Forest Pathology, 28, 99’12.CrossRefGoogle Scholar
  53. Sokal, R. R., & Rohlf, F. J. (1995). Biometry. The principles and practice of statistics in biological research. New York: Freeman.Google Scholar
  54. Sonesson, K. (1999). Oak decline in southern Sweden. Scandinavian Journal of Forest Research, 14, 368’75.CrossRefGoogle Scholar
  55. Sonesson, K., & Anderson, S. (2001). Forest conditions of beech and oak in Southern Sweden. National Board of Forestry. Report 2001, 12, ISSN 100-0295, 28 p.Google Scholar
  56. Ståål, E. (1986). Eken i skogen och landskapet [Oak in the forest and in the landscape] (p. 127). Alvesta: Lindströms Bottryckeri i Alvesta (in Swedish).Google Scholar
  57. Strand, G. H. (1996). Detection of observer bias in ongoing forest health monitoring programmes. Canadian Journal of Forest Research, 26, 1692’696.CrossRefGoogle Scholar
  58. Sverdrup, H., & Stjernquist, I. (Eds.) (2002). Developing principles and models for sustainable forestry in Sweden. Kluwer.Google Scholar
  59. Sverdrup, H., Warfvinge, P., & Nihlgard, B. (1994). Assessment of soil acidification effects on forest growth in Sweden. Water, Air and Soil Pollution, 78, 1’6.CrossRefGoogle Scholar
  60. Tainter, F. H., Retzlaff, W. A., Starkey, D. A., & Oak, S. W. (1990). Decline of radial growth in red oaks is associated with short-term changes in climate. European Journal of Forest Pathology, 20, 95’05.CrossRefGoogle Scholar
  61. Thelin, G., Sverdrup, H., Holmqvist, J., Rosengren, U., & Lindén, M. (2002). Assessment of nutrient sustainability in Norway spruce and mixed Norway spruce-oak stands at Jämjö. In H. Sverdrup & I. Stjernquist (Eds.), Developing principles for sustainable forestry in southern Sweden (pp. 337’54). Dordrecht: Kluwer.Google Scholar
  62. Thomas, F. M., & Buttner, G. (1998). Nutrient relations in healthy and damaged stands of mature oaks on clayey soils: Two case studies in northwestern Germany. Forest Ecology and Management, 108, 301’19.CrossRefGoogle Scholar
  63. Thomas, F. M., Blank, R., & Hartmann, G. (2002). Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. Forest Pathology, 32, 277’07.CrossRefGoogle Scholar
  64. Thomas, F. M., & Hartmann, G. (1996). Soil and tree water relations in mature oak stands of northern Germany differing in the degree of decline. Annales des Sciences Forestières, 53, 697’20.CrossRefGoogle Scholar
  65. Vannini, A., Valentini, R., & Luisi, N. (1996). Impact of drought and Hypoxylon mediterraneum on oak decline in the Mediterranean region. Annales des Sciences Forestières, 53, 753’60.CrossRefGoogle Scholar
  66. Wallander, H., Göransson, H., & Rosengren, U. (2004). Production, standing biomass and −/− abundance of ectomycorrhizal mycelia at different soil depths in spruce forests and mixed (spruce-oak) forests in southern Sweden. Oecologia (Berl), 139, 89’7.CrossRefGoogle Scholar
  67. Wjik, S. (1989). Skogsskadeinventering av bok och ek 1988 i Skåne, Blekinge och Halland. Skånelänens samrådsgrupp mot skogsskador. Rep. Länsstyrelsen I Kristianstads län, Rapport 7, 33 p. (in Swedish).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Igor Drobyshev
    • 1
  • Stefan Anderson
    • 2
  • Kerstin Sonesson
    • 3
  1. 1.Sustainable Management in Hardwood Forests, Southern Swedish Forest Research Centre, SLUAlnarpSweden
  2. 2.The Swedish Forest AgencyKristianstadSweden
  3. 3.Teacher EducationMalmö UniversityMalmöSweden

Personalised recommendations