Skip to main content

Advertisement

Log in

Pilot-study on GIS-based risk modelling of a climate warming induced tertian malaria outbreak in Lower Saxony (Germany)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The area under investigation, Lower Saxony (Northwest Germany), is a former malaria region with highest incidences along the coastal zones. Malaria had finally become extinct in the early 1950s. Subsequently, further scientific investigations in that field declined. Nevertheless, the vector in shape of Anopheles mosquitoes has still been present in Lower Saxony. Thus, the question arises, whether a new autochthon transmission could take place if the pathogen is introduced again and could develop in Anopheles mosquitoes. Answering this question was the first aim of the investigation at hand. The second one was to examine the spatial and temporal structure of potential transmissions in respect to the predicted increase of air temperatures according to the IPCC scenarios. To answer these questions, current information about Anophelinae and their distribution and habitat preferences within Germany were collected by literature research as well as temperature measurements and Anopheles findings were compiled from the German Weather Survey and the Niedersächsisches Landesamt für Ökologie (NLÖ), respectively. The results reveal a climate warming between the 30-years period from 1961 to 1990 and the years between 1985 and 2004. Induced by higher monthly mean temperatures, the risk of a malaria tertiana transmission is consequently increasing for Lower Saxony as temperature is the determining variable of the mathematical model. The study could demonstrate that most parts of the country are located within a 2 months lasting transmission zone. Although Germany is not an endemic malaria zone, the pathogen can enter the country most likely by infected people or imported mosquitoes that transport it in their guts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bartels, F. (1997). Ein Fuzzy-Auswertungs- und Krigingsystem für raumbezogene Daten. Diploma thesis, Institut für Informatik, Universität Kiel.

  • Dietz, K. (1993). The estimation of the basic reproduction number for infectious diseases. Statistical Methods in Medical Research, 2, 23–41.

    Article  CAS  Google Scholar 

  • Eritja, R., Aranda, C., Padrós, J., Goula, M., Lucientes, J., Escosa, R., et al. (2000). An annotated checklist and bibliography of the mosquitoes of Spain (Diptera: Culicidae). European Mosquito Bulletin, 8, 11–42.

    Google Scholar 

  • Hackett, L. W., & Missiroli, A. (1935). The varieties of Anopheles maculipennis and their relation to the distribution of malaria in Europe. Rivista di Malariologia, XIV(1), 1.

    Google Scholar 

  • Heinz, H.-J. (1950). Neuere Untersuchungen über die Verbreitung von Anopheles maculipennis in Hamburg. Zeitschrift fuÉr Angewandte Entomologie, 31(2), 304–333.

    Google Scholar 

  • Hoshen, M. B., & Morse, A. P. (2004). A weather-driven model of malaria transmission. Malaria Journal, 3, 32.

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel of Climate Change) (2001). Climate change. The scientific basis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jetten, T. H., & Takken, W. (1994). Anophelism without malaria: A review of the ecology and distribution of the genus Anopheles in Europe. Wageningen Agricultural University Papers 94 (5).

  • Koslowsky, S. (2002). Bluetounge Disease in Deutschland? Risikoabschätzung mit Hilfe eines Geographischen Informationssystems (GIS). Thesis, Freie Universität Berlin.

  • Krüger, A., Rech, A., Su, X. Z., & Tannich, E. (2001). Two cases of autochthonous Plasmodium falciparum malaria in Germany with evidence for local transmission by indigenous Anopheles plumbeus. Tropical Medicine & International Health, 6(12), 983–985.

    Article  Google Scholar 

  • Kubica-Biernat, B. (1999). Distribution of mosquitoes (Diptera: Culicidae) in Poland. European Mosquito Bulletin, 5, 1–17.

    Google Scholar 

  • Kühlhorn, F. (1962). Über Anopheles-Vorkommen (Diptera: Culicidae) und die Mückenverhältnisse verschiedener Brutbiotope im Raum Göttingen-Northeim. Beiträge zur Naturkunde Niedersachsens, 4/5, 84–104.

    Google Scholar 

  • Lindsay, S. W., & Thomas, C. J. (2001). Global warming and risk of vivax malaria in Great Britain. Global Change & Human Health, 2(1), 80–84.

    Article  Google Scholar 

  • MacDonald, G. (1956). Epidemiological basis of malaria control. Bulletin of the World Health Organization, 15, 613–626.

    CAS  Google Scholar 

  • Martens, P., Kovats, R. S., Nijhof, S., de Vries, P., Livermore, M. T. J., Bradley, D. J., et al. (1999). Climate change and future population at risk of malaria. Global Environmental Change, 9, 89–107.

    Article  Google Scholar 

  • Martini, E. (1920a). Anopheles in der näheren und weiteren Umgebung von Hamburg und ihre voraussichtliche Bedeutung für die Volksgesundheit. Abhandlungen aus dem Gebiet der Naturwissenschaften, XXI(2).

  • Martini, E. (1920b). Anopheles in Niedersachsen und die Malariagefahr. Hygienische Rundschau, 22, 673–677.

    Google Scholar 

  • Martini, E. (1921). Zur Bionomie unserer Stechmücken. Archiv für Schiffs- und Tropen-Hygiene, 25, 341–347.

    Google Scholar 

  • Martini, E. (1946). Lehrbuch der medizinischen Entomologie. Gustav Fischer, Jena.

  • Moshkovsky, S. D., & Rashina, M. G. (1951). Epidemiology and medical parasitology for entomologists. Moscow (in Russian, unknown publisher, after Detinova, T.S. (1962): Age-grouping methods in Diptera of medical importance with special reference to some vectors of malaria. WHO, Geneva).

  • Mühlberger, N., Jelinek, T., Gascon, J., Probst, M., Zoller, T., Schunk, M., et al. (2004). Epidemiology and clinical features of vivax malaria imported to Europe: Sentinel surveillance data from TropNetEurop. Malaria Journal, 3, 5.

    Article  Google Scholar 

  • Mühlens, P. (1930). Malaria. Neue Deutsche Klinik, VII(31), 122–149.

    Google Scholar 

  • Omumbo, J. A., Hay, S. I., Guerra, C. A., & Snow, R. W. (2004). The relationship between the Plasmodium falciparum parasite ratio in childhood and climate estimates of malaria transmission in Kenya. Malaria Journal, 3, 17.

    Article  Google Scholar 

  • Piotrowski, J. A., Bartels, F., Salski, A., & Schmidt, G. (1996). Geostatistical regionalization of glacial aquitard thickness in northwestern Germany, based on fuzzy kriging. Mathematical Geology, 28(4), 437–452.

    Article  Google Scholar 

  • Ramsdale, C., & Snow, K. (2000). Distribution of the genus Anopheles in Europe. European Mosquito Bulletin, 7, 1–26.

    Google Scholar 

  • Reiter, P. (2000). Malaria and global warming in perspective? Emerging Infectious Diseases, 6, 438–439.

    Article  CAS  Google Scholar 

  • Romi, R., Pierdominici, G., Severini, C., Tamburro, A., Cocchi, M., Menichetti, D., et al. (1997). Status of malaria vectors in Italy. Journal of Medical Entomology, 34, 263–271.

    CAS  Google Scholar 

  • Schaffner, F. (1998). A revised checklist of French mosquitoes. European Mosquito Bulletin, 2, 1–9.

    Google Scholar 

  • Schröder, W., Schmidt, G., & Hasenclever, J. (2006). Geostatistical analysis of data on air temperature and plant phenology from Baden-Württemberg (Germany) as a basis for regional scaled models of climate change. Environmental Monitoring and Assessment, 120, 27–43. doi:10.1007/s10661-005-9047-y.

  • Small, J., Goetz, S. J., & Hay, S. I. (2003). Climatic suitability for malaria transmission in Africa. PNAS, 100(26).

  • Smith, D. L., & McKenzie, F. E. (2004). Statics and dynamics of malaria infection in Anopheles mosquitoes. Malaria Journal, 3, 13.

    Article  Google Scholar 

  • Snow, R. W., Ikoku, A., Omumbo, J., & Ouma, J. (1999). The epidemiology, politics and control of malaria epidemics in Kenya: 1900–1998. Roll Back Malaria, Resource Network on Epidemics, World Health Organisation.

  • Weyer, F. (1940). Malaria und Malariaübertragung in Ostfriesland. Archiv für Schiffs- und Tropen-Hygiene, 44(1).

  • Weyer, F. (1956). Bemerkungen zum Erlöschen der ostfriesischen Malaria und zur Anopheles-Lage in Deutschland. Zeitschrift fuÉr Tropenmedizin und Parasitologie, 7(2), 219–228.

    CAS  Google Scholar 

  • Wilke, A., Kiel, E., Schröder, W., & Kampen, H. (2006). Anophelinae (Diptera: Culicidae) in ausgewählten Marschgebieten Niedersachsens: Bestandserfassung, Habitatbindung und Interpolation. Mitteilungen der Deutschen Gesellschaft fuÉr Allgemeine und Angewandte Entomologie, 15, 357–362.

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. Hyronimus Dastych and Mrs. Frerichs at the Zoological Institute of the University of Hamburg for their help and literature donations, Dr. Jürgen Marxen at the Max-Plank-Institute for Limnology in Schlitz and the former Niedersächsisches Landesamt für Ökologie in Hildesheim for the permission to use the BOG-Archiv.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winfried Schröder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröder, W., Schmidt, G., Bast, H. et al. Pilot-study on GIS-based risk modelling of a climate warming induced tertian malaria outbreak in Lower Saxony (Germany). Environ Monit Assess 133, 483–493 (2007). https://doi.org/10.1007/s10661-006-9603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-006-9603-0

Keywords

Navigation