Pilot-study on GIS-based risk modelling of a climate warming induced tertian malaria outbreak in Lower Saxony (Germany)

  • Winfried Schröder
  • Gunther Schmidt
  • Hubert Bast
  • Roland Pesch
  • Ellen Kiel


The area under investigation, Lower Saxony (Northwest Germany), is a former malaria region with highest incidences along the coastal zones. Malaria had finally become extinct in the early 1950s. Subsequently, further scientific investigations in that field declined. Nevertheless, the vector in shape of Anopheles mosquitoes has still been present in Lower Saxony. Thus, the question arises, whether a new autochthon transmission could take place if the pathogen is introduced again and could develop in Anopheles mosquitoes. Answering this question was the first aim of the investigation at hand. The second one was to examine the spatial and temporal structure of potential transmissions in respect to the predicted increase of air temperatures according to the IPCC scenarios. To answer these questions, current information about Anophelinae and their distribution and habitat preferences within Germany were collected by literature research as well as temperature measurements and Anopheles findings were compiled from the German Weather Survey and the Niedersächsisches Landesamt für Ökologie (NLÖ), respectively. The results reveal a climate warming between the 30-years period from 1961 to 1990 and the years between 1985 and 2004. Induced by higher monthly mean temperatures, the risk of a malaria tertiana transmission is consequently increasing for Lower Saxony as temperature is the determining variable of the mathematical model. The study could demonstrate that most parts of the country are located within a 2 months lasting transmission zone. Although Germany is not an endemic malaria zone, the pathogen can enter the country most likely by infected people or imported mosquitoes that transport it in their guts.


Anopheles Climate change Geostatistics GIS Risk mapping Malaria tertiana 



We thank Prof. Dr. Hyronimus Dastych and Mrs. Frerichs at the Zoological Institute of the University of Hamburg for their help and literature donations, Dr. Jürgen Marxen at the Max-Plank-Institute for Limnology in Schlitz and the former Niedersächsisches Landesamt für Ökologie in Hildesheim for the permission to use the BOG-Archiv.


  1. Bartels, F. (1997). Ein Fuzzy-Auswertungs- und Krigingsystem für raumbezogene Daten. Diploma thesis, Institut für Informatik, Universität Kiel.Google Scholar
  2. Dietz, K. (1993). The estimation of the basic reproduction number for infectious diseases. Statistical Methods in Medical Research, 2, 23–41.CrossRefGoogle Scholar
  3. Eritja, R., Aranda, C., Padrós, J., Goula, M., Lucientes, J., Escosa, R., et al. (2000). An annotated checklist and bibliography of the mosquitoes of Spain (Diptera: Culicidae). European Mosquito Bulletin, 8, 11–42.Google Scholar
  4. Hackett, L. W., & Missiroli, A. (1935). The varieties of Anopheles maculipennis and their relation to the distribution of malaria in Europe. Rivista di Malariologia, XIV(1), 1.Google Scholar
  5. Heinz, H.-J. (1950). Neuere Untersuchungen über die Verbreitung von Anopheles maculipennis in Hamburg. Zeitschrift fuÉr Angewandte Entomologie, 31(2), 304–333.Google Scholar
  6. Hoshen, M. B., & Morse, A. P. (2004). A weather-driven model of malaria transmission. Malaria Journal, 3, 32.CrossRefGoogle Scholar
  7. IPCC (Intergovernmental Panel of Climate Change) (2001). Climate change. The scientific basis. Cambridge: Cambridge University Press.Google Scholar
  8. Jetten, T. H., & Takken, W. (1994). Anophelism without malaria: A review of the ecology and distribution of the genus Anopheles in Europe. Wageningen Agricultural University Papers 94 (5).Google Scholar
  9. Koslowsky, S. (2002). Bluetounge Disease in Deutschland? Risikoabschätzung mit Hilfe eines Geographischen Informationssystems (GIS). Thesis, Freie Universität Berlin.Google Scholar
  10. Krüger, A., Rech, A., Su, X. Z., & Tannich, E. (2001). Two cases of autochthonous Plasmodium falciparum malaria in Germany with evidence for local transmission by indigenous Anopheles plumbeus. Tropical Medicine & International Health, 6(12), 983–985.CrossRefGoogle Scholar
  11. Kubica-Biernat, B. (1999). Distribution of mosquitoes (Diptera: Culicidae) in Poland. European Mosquito Bulletin, 5, 1–17.Google Scholar
  12. Kühlhorn, F. (1962). Über Anopheles-Vorkommen (Diptera: Culicidae) und die Mückenverhältnisse verschiedener Brutbiotope im Raum Göttingen-Northeim. Beiträge zur Naturkunde Niedersachsens, 4/5, 84–104.Google Scholar
  13. Lindsay, S. W., & Thomas, C. J. (2001). Global warming and risk of vivax malaria in Great Britain. Global Change & Human Health, 2(1), 80–84.CrossRefGoogle Scholar
  14. MacDonald, G. (1956). Epidemiological basis of malaria control. Bulletin of the World Health Organization, 15, 613–626.Google Scholar
  15. Martens, P., Kovats, R. S., Nijhof, S., de Vries, P., Livermore, M. T. J., Bradley, D. J., et al. (1999). Climate change and future population at risk of malaria. Global Environmental Change, 9, 89–107.CrossRefGoogle Scholar
  16. Martini, E. (1920a). Anopheles in der näheren und weiteren Umgebung von Hamburg und ihre voraussichtliche Bedeutung für die Volksgesundheit. Abhandlungen aus dem Gebiet der Naturwissenschaften, XXI(2).Google Scholar
  17. Martini, E. (1920b). Anopheles in Niedersachsen und die Malariagefahr. Hygienische Rundschau, 22, 673–677.Google Scholar
  18. Martini, E. (1921). Zur Bionomie unserer Stechmücken. Archiv für Schiffs- und Tropen-Hygiene, 25, 341–347.Google Scholar
  19. Martini, E. (1946). Lehrbuch der medizinischen Entomologie. Gustav Fischer, Jena.Google Scholar
  20. Moshkovsky, S. D., & Rashina, M. G. (1951). Epidemiology and medical parasitology for entomologists. Moscow (in Russian, unknown publisher, after Detinova, T.S. (1962): Age-grouping methods in Diptera of medical importance with special reference to some vectors of malaria. WHO, Geneva).Google Scholar
  21. Mühlberger, N., Jelinek, T., Gascon, J., Probst, M., Zoller, T., Schunk, M., et al. (2004). Epidemiology and clinical features of vivax malaria imported to Europe: Sentinel surveillance data from TropNetEurop. Malaria Journal, 3, 5.CrossRefGoogle Scholar
  22. Mühlens, P. (1930). Malaria. Neue Deutsche Klinik, VII(31), 122–149.Google Scholar
  23. Omumbo, J. A., Hay, S. I., Guerra, C. A., & Snow, R. W. (2004). The relationship between the Plasmodium falciparum parasite ratio in childhood and climate estimates of malaria transmission in Kenya. Malaria Journal, 3, 17.CrossRefGoogle Scholar
  24. Piotrowski, J. A., Bartels, F., Salski, A., & Schmidt, G. (1996). Geostatistical regionalization of glacial aquitard thickness in northwestern Germany, based on fuzzy kriging. Mathematical Geology, 28(4), 437–452.CrossRefGoogle Scholar
  25. Ramsdale, C., & Snow, K. (2000). Distribution of the genus Anopheles in Europe. European Mosquito Bulletin, 7, 1–26.Google Scholar
  26. Reiter, P. (2000). Malaria and global warming in perspective? Emerging Infectious Diseases, 6, 438–439.CrossRefGoogle Scholar
  27. Romi, R., Pierdominici, G., Severini, C., Tamburro, A., Cocchi, M., Menichetti, D., et al. (1997). Status of malaria vectors in Italy. Journal of Medical Entomology, 34, 263–271.Google Scholar
  28. Schaffner, F. (1998). A revised checklist of French mosquitoes. European Mosquito Bulletin, 2, 1–9.Google Scholar
  29. Schröder, W., Schmidt, G., & Hasenclever, J. (2006). Geostatistical analysis of data on air temperature and plant phenology from Baden-Württemberg (Germany) as a basis for regional scaled models of climate change. Environmental Monitoring and Assessment, 120, 27–43. doi:10.1007/s10661-005-9047-y.
  30. Small, J., Goetz, S. J., & Hay, S. I. (2003). Climatic suitability for malaria transmission in Africa. PNAS, 100(26).Google Scholar
  31. Smith, D. L., & McKenzie, F. E. (2004). Statics and dynamics of malaria infection in Anopheles mosquitoes. Malaria Journal, 3, 13.CrossRefGoogle Scholar
  32. Snow, R. W., Ikoku, A., Omumbo, J., & Ouma, J. (1999). The epidemiology, politics and control of malaria epidemics in Kenya: 1900–1998. Roll Back Malaria, Resource Network on Epidemics, World Health Organisation.Google Scholar
  33. Weyer, F. (1940). Malaria und Malariaübertragung in Ostfriesland. Archiv für Schiffs- und Tropen-Hygiene, 44(1).Google Scholar
  34. Weyer, F. (1956). Bemerkungen zum Erlöschen der ostfriesischen Malaria und zur Anopheles-Lage in Deutschland. Zeitschrift fuÉr Tropenmedizin und Parasitologie, 7(2), 219–228.Google Scholar
  35. Wilke, A., Kiel, E., Schröder, W., & Kampen, H. (2006). Anophelinae (Diptera: Culicidae) in ausgewählten Marschgebieten Niedersachsens: Bestandserfassung, Habitatbindung und Interpolation. Mitteilungen der Deutschen Gesellschaft fuÉr Allgemeine und Angewandte Entomologie, 15, 357–362.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Winfried Schröder
    • 1
  • Gunther Schmidt
    • 1
  • Hubert Bast
    • 1
  • Roland Pesch
    • 1
  • Ellen Kiel
    • 2
  1. 1.Lehrstuhl für LandschaftsökologieHochschule VechtaVechtaGermany
  2. 2.Institut für Biologie und UmweltwissenschaftenUniversität OldenburgOldenburgGermany

Personalised recommendations