Environmental Monitoring and Assessment

, Volume 125, Issue 1–3, pp 219–228 | Cite as

Isolation and Identification of Enterococci from Seawater Samples: Assessment of Their Resistance to Antibiotics and Heavy Metals

  • Ayten Kimiran-Erdem
  • Elif Ozlem Arslan
  • Nazmiye Ozlem Sanli Yurudu
  • Zuhal Zeybek
  • Nihal Dogruoz
  • Aysin Cotuk


A hundred Enterococcus strains were isolated from seawater samples collected from coastal areas of Istanbul. Isolates were identified to the species level using standard biochemical tests specified by Facklam and Collins. The species distribution was as follows Enterococcus faecalis (96%), Enterococcus gallinarum (3%) and Enterococcus solitarius (1%). The resistance of bacteria to both heavy metals (zinc [Zn], iron [Fe], cadmium [Cd], chrome [Cr], cobalt [Co]) and antibiotics (ampicillin 10 μg [AP], penicillin G 10 Units [PG], gentamycin 10 μg [GM], streptomycin 10 μg [S], chloramphenicol 10 μg [C], erythromycin 15 μg [E], kanamycin 30 μg [K], amikacin 30 μg [AK], nalidixic acid 30 μg [NA], and vancomycin 30 μg [VA]) was evaluated. None of the strains was resistant to VA. It was found that among the 100 isolates, those that exhibit resistance to antibiotics, particularly NA, S and K, were also resistant all the heavy metals tested. To our knowledge this is the first report focusing on determination of resistance of environmental enterococci found in Istanbul against heavy metals and antibiotics. Thus, combined expressions of antibiotic and heavy metal resistance may help to reinforce ecological and epidemiological studies and to determine the role of these strains in antibiotic and heavy metal resistance dissemination.


Enterococci E. faecalis Heavy metal Antibiotic Resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akgul, S. N., & Sumerkan, B. (1999). Identification of enterococci isolated from various clinical specimens based on biochemical characteristics. Turkish Journal of Infection, 13(3), 399–402.Google Scholar
  2. Aviles, M., De Vicente, A., Codina, J. C., & Romero, P. (1988). Antibiotic resistance of bacterial strains isolated from the marine environment. Rapport Commission Internationale Pour L’Exploration Scientifique De La Mer Méditerranée, 31, 173–174.Google Scholar
  3. Barisic, Z., & Punda-Polić, V. (2000). Antibiotic resistance among enterococcal strains isolated from clinical specimens. International Journal of Antimicrobial Agents, 16, 65–68.CrossRefGoogle Scholar
  4. Barry, A. L., & Thornsberry, C. (1981). Susceptibility testing. In E. H. Lennette, A. Balows, W. J. Hausler, & J. P. Truant (Eds.), Manual of clinical microbiology (pp. 561–574). Washington, District of Columbia: American Society for Microbiology.Google Scholar
  5. Bervoets, L., Int Panis, L., & Verheyen, R. (1994). Trace metal levels in water, sediments and Chironomus gr. thumni, from different water courses in Flanders (Belgium). Chemosphere, 29, 1591–1601.CrossRefGoogle Scholar
  6. Borrego, J. J., & José Figueras M. (1997). Microbiological quality of natural waters. Microbiología SEM, 13, 413–416.Google Scholar
  7. Cabelli, V. J., Dufour, P. A., Levin, M. A., Mc Cabe L. J., & Haberman, P. W. (1979). Relationship of microbial indicators to health effects at marine bathing beaches. American Journal of Public Health, 69(7), 690–696.Google Scholar
  8. Calomiris, J. J., Armstrong, J. L., & Seidler, R. J. (1984). Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water. Applied and Environmental Microbiology, 47, 1238–1242.Google Scholar
  9. Chandrasekaran, S., Venkatesh, B., & Lalithakumari, D. (1998). Transfer and expression of a multiple antibiotic resistance plasmid in marine bacteria. Current Microbiology, 37, 347–351.CrossRefGoogle Scholar
  10. Choi, S., Chu, W., Brown, J., Becker, S. J., Harwood, V. J., & Jiang, S. C. (2003). Application of enterococci antibiotic resistance patterns for contamination source identification at Huntington Beach, California. Marine Pollution Bulletin, 46, 748–755.CrossRefGoogle Scholar
  11. De Vicente, A., Avilés, M., Codina, J. C., Borrego J. J., & Romero, P. (1990). Resistance to antibiotics and heavy metals of Pseudomonas aeruginosa isolated from natural waters. Journal of Applied Bacteriology, 68, 625–632.Google Scholar
  12. Dicuonzo, G., Gherardi, G., Lorino, G., Angeletti, S., Battistoni, F., Bertuccini, L., et al. (2001). Antibiotic resistance and genotypic characterization by PFGE of clinical and environmental isolates of enterococci. FEMS Microbiology Letters, 201, 205–211.CrossRefGoogle Scholar
  13. Dionisio, L. P. C., & Borrego, J. J. (1995). Evaluation of media for the enumeration of faecal streptococci from natural water samples. Journal of Microbiological Methods, 23(2), 183–203.CrossRefGoogle Scholar
  14. Eskiturk, A., Ekti, M., Culha, G., & Korten, V. (1997). Investigation of the prevalence of high level aminoglycoside resistant and vancomycin resistant enterococci among hospitalized patients and sewage samples. Bulletin of Microbiology, 31, 219–229.Google Scholar
  15. Facklam, R. R., & Collins, M. D. (1989). Identification of Enterococcus species isolated form human infections by a conventional test scheme. Journal of Clinical Microbiology, 27, 731–734.Google Scholar
  16. Fleisher, J. M., Kay, D., Jones, F., Wyer, M. D., & Godfree, A. F. (1996). Marine waters contaminated with domestic sewage: Nonenteric illnesses associated with bather exposure in the United Kingdom. American Journal of Public Health, 86(9), 1228–1234.CrossRefGoogle Scholar
  17. Genthner, F. J., James, J. B., Yates, D. F., & Friedman S. D. (2005). Use of composite data sets for source-tracking enterococci in the water column and shoreline interstitial waters on Pensacola Beach, Florida. Marine Pollution Bulletin, 50, 724–732.CrossRefGoogle Scholar
  18. Grewal, J. S., & Tiwari, R. P. (1990). Resistance to metal ions and antibiotics in Escherichia coli isolated from foodstuffs. Journal of Medical Microbiology, 32, 223–236.Google Scholar
  19. Haraguchi, H., & Akagi, T. (1991). Application of atomic absorption to marine analysis. In S. E. Manahan (Ed.), Environmental Chemistry (pp. 154–157). Michigan, America.Google Scholar
  20. Hartke, A., Lemarinier, S., Pichereau, V., & Auffray, Y. (2002). Survival of Enterococcus faecalis in seawater microcosm is limited in the presence of bacteriovorous zooflagellates. Current Microbiology, 44, 329–335.CrossRefGoogle Scholar
  21. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., Williams, S. T. (1994). In W. R. Hensly (Ed.), Bergey’s manual of determinative bacteriology (9th edn.) (pp. 538–539). Baltimore, Maryland: Williams & Wilkins.Google Scholar
  22. Jana, S., & Bhattacharya, D. N. (1987). Effect of heavy metals on growth population of a fecal coliform bacterium Escherichia coli in aquatic environment. Water, Air, and Soil Pollution, 38, 251–254.Google Scholar
  23. Junco, M. T. T., Martín, M. G., Toledo, M. L. P., Gómez, P. L., & Barrasa, J. L. M. (2001). Identification and antibiotic resistance of faecal enterococci isolated from water samples. International Journal of Hygiene and Environmental Health, 203, 363–368.CrossRefGoogle Scholar
  24. Kacmaz, B., & Aksoy, A. (2005). Antimicrobial resistance of enterococci in Turkey. International Journal of Antimicrobial Agents, 25, 535–538.CrossRefGoogle Scholar
  25. Kim, J., Lee, G., Kim, Y., Kim, S., & Kim, Y. H. (2004). In vitro antibacterial activity of echinomycin and a novel analogue, YK2000, against vancomycin-resistant enterococci. International Journal of Antimicrobial Agents, 24, 613–615.CrossRefGoogle Scholar
  26. Kimiran, A. (2002). Assessment of the bacteriological quality of the coastal waters of Istanbul. University of Istanbul Faculty of Science the Journal of Biology, 65, 61–76.Google Scholar
  27. Klare, I., Konstabel, C., Badstübner, D., Werner, G., & Witte, W. (2003). Occurrence and spread of antibiotic resistances in Enterococcus faecium. International Journal of Food Microbiology, 88, 269–290.CrossRefGoogle Scholar
  28. Kühn, I., Iversen, A., Burman, L. G., Olsson-Liljequist, B., Franklin, A., Finn, M., et al. (2000). Epidemiology and ecology of enterococci, with special reference to antibiotic resistant strains, in animals, humans and the environment example of an ongoing project within the European Research Programme. International Journal of Antimicrobial Agents, 14, 337–342.CrossRefGoogle Scholar
  29. Laplace, J. M., Hartke, A., Giard, J. C., & Auffray, Y. (2000). Cloning, characterization and expression of an Enterococcus faecalis gene responsive to heavy metals. Applied Microbiology and Biotechnology, 53, 685–689.CrossRefGoogle Scholar
  30. Lleò M. M., Bonato, B., Benedetti, D., & Canepari, P. (2005). Survival of enterococcal species in aquatic environments. FEMS Microbiology, Ecology, 54(2), 189–196.CrossRefGoogle Scholar
  31. Lopes, M. F. S., Riberio, T., Abrantes, M., Marques J. J. F., Tenreiro, R., & Crespo, M. T. B. (2005). Antimicrobial resistance profiles of dairy and clinical isolates and type strains of enterococci. International Journal of Food Microbiology, 103, 191–198.CrossRefGoogle Scholar
  32. Manero, A., & Blanch, A. R. (1999). Identification of Enterococcus spp. with a biochemical key. Applied and Environmental Microbiology, 65(10), 4425–4430.Google Scholar
  33. Moaddab, S. B., & Toreci, K. (2000). Species level identification and investigation of resistance to vancomycin and some other antibiotics in Enterococcus strains. Journal of the Turkish Microbiological Society, 30, 77–84.Google Scholar
  34. Moreno, A., Diaz, J., Luzon, P., & Batista, N. (1997). Evaluation of a rapid method for the identification of the Enterococcus genus. Enfermedades Infecciosas y Microbiologia Clinica, 15(2), 85–87.Google Scholar
  35. Morozzi, G., Cenci, G., Caldini, G., Losito, G., & Morosi, A. (1986). Relationship between environment spread and presence in hosts of Escherichia coli strains resistant to antibiotics and metals. Zentralblatt fur Bakteriologie, Mikrobiologie und Hygiene. Serie B, 182, 393–400.Google Scholar
  36. Nakahara, H., Ishikawa, T., Sarai, Y., & Kondo, I. (1977). Distribution of resistance to metals and antibiotics of staphylococcal strains in Japan. Zentralblatt fur Bakteriologie, Mikrobiologie und Hygiene, 237, 470–476.Google Scholar
  37. National Committee for Clinical Laboratory Standards (2001). Performance standards for antimicrobial susceptibility testing. Eleventh International Supplement. Disk diffusion. M100-S 11. NCCLS, Villanova, Pennsylvania, USA.Google Scholar
  38. Peters, J., Mac, Kiem, Wichmann-Schauer, H., Klein, G., & Ellerbroek, L. (2003). Species distribution and antibiotic resistance patterns of enterococci isolated from food of animal origin in Germany. International Journal of Food Microbiology, 88, 311–314.CrossRefGoogle Scholar
  39. Pourcher, A. M., Devriese, L. A., Hernandez, J. P., & Delattre, J. M. (1991). Enumeration by a miniaturized method of Escherichia coli, Streptococcus bovis and enterococci as indicators of the origin of fecal pollution of waters. Journal of Applied Bacteriology, 70, 525–530.Google Scholar
  40. Rosdahl, V. T., & Rosendal, K. (1980). Resistance to cadmium, arsenate and mercury among Danish strains of Staphylococcus aureus isolated from cases of bacteriaemia. Journal of Medical Microbiology, 13, 383–391.CrossRefGoogle Scholar
  41. Rosenberg, J., Jarvis, W. R., Abbott, S. L., & Vugia D. J. (2004). Emergence of vancomycin-resistant enterococci in San Francisco Bay area hospitals during 1994 to 1998. Infection Control and Hospital Epidemiology, 25(5), 408–412.CrossRefGoogle Scholar
  42. Ruof, K. L., de la Maza, L., Murtagh, M. J., Spargo, J. D., & Ferraro, M. J. (1990). Species identities of enterococci isolated from clinical specimens. Journal of Clinical Microbiology, 28(3), 435–437.Google Scholar
  43. Saliba, L. J., & Helmer, R. (1990). Health risks associated with pollution of coastal bathing waters. World Health Statistics Quarterly, 43(3), 177–187.Google Scholar
  44. Silva, A. A. L. E., & Hofer, E. (1993). Resistance to antibiotics and heavy metals in Escherichia coli from marine fish, environmental toxicology and water quality. Environmental Toxicology and Water Quality, 8, 1–11.CrossRefGoogle Scholar
  45. Sjogren, R. E., & Port, J. (1981). Heavy metal-antibiotic resistant bacteria in a lake recreational area. Water, Air, and Soil Pollution, 15, 29–44.CrossRefGoogle Scholar
  46. Stiefel, U., Paterson, D. L., Pultz, N. J., Gordon, S. M., Aron, D. C., & Donskey C. J. (2004). Effect of the increasing use of piperacillin/tazobactam on the incidence of vancomycin-resistant enterococci in four academic medical centers. Infection Control and Hospital Epidemiology, 25(5) 380–383.CrossRefGoogle Scholar
  47. Von Schirnding, Y. E., Kfir, R., Cabelli, V., Franklin, L., & Joubert, G. (1992). Morbidity among bathers exposed to polluted seawater. A prospective epidemiological study. South African Medical Journal, 81(11), 543–546.Google Scholar
  48. Washington, J. A., & Sutter, V. L. (1981). Dilution test procedures. In E. H. Lennette, A. Balows, W. J. Hausler, & J. P. Truant (Eds.), Manual of clinical microbiology (pp. 549–555). Washington, District of Columbia: American Society for Microbiology.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Ayten Kimiran-Erdem
    • 1
  • Elif Ozlem Arslan
    • 1
  • Nazmiye Ozlem Sanli Yurudu
    • 1
  • Zuhal Zeybek
    • 1
  • Nihal Dogruoz
    • 1
  • Aysin Cotuk
    • 1
  1. 1.Department of Biology, Faculty of ScienceIstanbul UniversityIstanbulTurkey

Personalised recommendations