Advertisement

Environmental Monitoring and Assessment

, Volume 130, Issue 1–3, pp 511–518 | Cite as

Using Lichen Chemistry to Assess Airborne Tungsten and Cobalt in Fallon, Nevada

  • Paul R. Sheppard
  • Robert J. Speakman
  • Gary Ridenour
  • Mark L. Witten
Article

Abstract

This paper describes the use of lichen chemistry to assess airborne tungsten and cobalt in Fallon, Nevada, where a cluster of childhood leukemia has been on going since 1997. Lichens and their rock substrates were collected from Rattlesnake Hill within Fallon as well as from four different rock outcrops located north, east, south, and west of Fallon and at least 20 km away from the town center. In the lichens themselves, W and Co are significantly higher within Fallon than in the combined control site outside of Fallon. In the rock substrates of the lichens, no differences exist in W and Co. The W and Co differences in lichens cannot be attributed to substrate geochemistry. Fallon is distinctive in west central Nevada for high airborne W and Co, and given its cluster of childhood leukemia, it stands to reason that additional biomedical research is in order to test directly the leukogenicity of combined airborne W and Co.

Keywords

Fallon, Nevada Childhood leukemia Tungsten Cobalt Lichen chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amato, I. (1988). Tapping tree rings for the environmental tales they tell. Analytical Chemistry, 60, 1103A–1107A.CrossRefGoogle Scholar
  2. Baron, G. (1999). Understanding lichens (p. 92). Slough, England: Richmond.Google Scholar
  3. Bennett, J. P., & Wetmore, C. M. (2003). Elemental chemistry of four lichen species from the Apostle Islands, Wisconsin, 1987, 1995 and 2001. Science of the Total Environment, 305, 77–86.CrossRefGoogle Scholar
  4. Brodo, I. M., Sharnoff, S. D., & Sharnoff, S. S. (2001). Lichens of North America (p. 795). New Haven, Connecticut: Yale University Press.Google Scholar
  5. Bull, W. B., King, J., Kong, F. C., Moutoux, T., & Phillips, W. M. (1994). Lichen dating of coseismic landslide hazards in alpine mountains. Geomorphology, 10, 253–264.CrossRefGoogle Scholar
  6. Chiarenzelli, J., Aspler, L., Dunn, C., Cousens, B., Ozarko, D., & Powis, K. (2001). Multi-element and rare earth element composition of lichens, mosses, and vascular plants from the Central Barrenlands, Nunavut, Canada. Applied Geochemistry, 16, 245–270.CrossRefGoogle Scholar
  7. Conti, M. E., & Cecchetti, G. (2001). Biological monitoring: Lichens as bioindicators of air pollution assessment – A review. Environmental Pollution, 114, 471–492.CrossRefGoogle Scholar
  8. Conti, M. E., Tudino, M., Stripeikis, J., & Cecchetti, G. (2004). Heavy metal accumulation in the lichen Evernia prunastri transplanted at urban, rural and industrial sites in central Italy. Journal of Atmospheric Chemistry, 49, 83–94.CrossRefGoogle Scholar
  9. Cuny, D., Davranche, L., Thomas, P., Kempa, M., & Van Haluwyn, C. (2004). Spatial and temporal variations of trace element contents in Xanthoria parietina thalli collected in a highly industrialized area in northern France as an element for a future epidemiological study. Journal of Atmospheric Chemistry, 49, 391–401.CrossRefGoogle Scholar
  10. Ernst, W. H. O. (1995). Sampling of plant material for chemical analysis. Science of the Total Environment, 176, 15–24.CrossRefGoogle Scholar
  11. Expert Panel (2004). Final report and recommendations to the Nevada State Health Division, expert panel on childhood leukemia in Churchill County, Nevada. Available: http://www.health2k.state.nv.us/healthofficer/leukaemia/FALLONexpertpanel022304.pdf.
  12. Falla, J., Laval-Gilly, P., Henryon, M., Morlot, D., & Ferard, J. F. (2000). Biological air quality monitoring: A review. Environmental Monitoring and Assessment, 64, 627–644.CrossRefGoogle Scholar
  13. Freitas, M. C., & Pacheco, A. M. G. (2004). Bioaccumulation of cobalt in Parmelia sulcata. Journal of Atmospheric Chemistry, 49, 67–82.CrossRefGoogle Scholar
  14. Garty, J. (1993). Lichens as biomonitors for heavy metal pollution. In B. Markert (Ed.), Plants as biomonitors: Indicators for heavy metals in the terrestrial environment (pp. 193–195). Weinheim, Germany: VCH.Google Scholar
  15. Glascock, M. D. (1992). Characterization of archaeological ceramics at MURR by neutron activation analysis and multivariate statistics. In H. Neff (Ed.), Chemical characterization of ceramic pastes in archaeology (pp. 11–26). Madison, Wisconsin: Prehistory.Google Scholar
  16. Greater Fallon Area Chamber of Commerce (2005). History of Fallon. Available: http://www.fallonchamber.com.
  17. Harris, P. M., & Humphreys, D. S. C. (1983). Tungsten: A review. In: Occasional papers of the Institution of Mining and Metallurgy, Paper 2 (pp. 42). London, England: Institution of Mining and Metallurgy.Google Scholar
  18. Helena, P. N., Franc, B., & Cvetka, R. L. (2004). Monitoring of short-term heavy metal deposition by accumulation in epiphytic lichens (Hypogymnia physodes (L.) Nyl.). Journal of Atmospheric Chemistry, 49, 223–230.CrossRefGoogle Scholar
  19. Juran, Z., Jaimovi Batič, F., Smodiš, B., & Wolterbeek, H. T. (1996). Atmospheric heavy metal pollution in Slovenia derived from results for epiphytic lichens. Fresenius’ Journal of Analytical Chemistry, 354, 681–687.Google Scholar
  20. Kingston, H. M., & Haswell, S. J. (Eds.) (1997). Microwave-enhanced chemistry fundamentals, sample preparation, and applications (p. 772). Washington, District of Columbia: American Chemical Society.Google Scholar
  21. Krauskopf, K. B. (1995). Introduction to geochemistry (p. 647). New York: McGraw-Hill.Google Scholar
  22. Lewis, T. E. (Ed.) (1995). Tree rings as indicators of ecosystem health (p. 210). Boca Raton, Florida: CRC.Google Scholar
  23. Loppi, S., & Pirintsos, S. A. (2003). Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy). Environmental Pollution, 121, 327–332.CrossRefGoogle Scholar
  24. MacNaeidhe, F. (1995). Procedures and precautions used in sampling techniques and analysis of trace elements in plant matrices. Science of the Total Environment, 176, 25–31.CrossRefGoogle Scholar
  25. Markert, B. (1995). Sample preparation (cleaning, drying, homogenization) for trace element analysis in plant matrices. Science of the Total Environment, 176, 45–61.CrossRefGoogle Scholar
  26. Monn, C., Braendli, O., Schaeppi, G., Schindler, C., Ackermann-Liebrich, U., Leuenberger, P., et al. (1995). Particulate matter <10 μm (PM10) and total suspended particulates (TSP) in-urban, rural and alpine air in Switzerland. Atmospheric Environment, 29, 2565–2573.CrossRefGoogle Scholar
  27. Moore, L. E., Lu, M., & Smith, A. H. (2002). Childhood cancer incidence and arsenic exposure in drinking water in Nevada. Archives of Environmental Health, 57, 201–206.CrossRefGoogle Scholar
  28. Mullen, F. X. (2003). No pollution controls in tungsten plant. Reno Gazette-Journal (6 February).Google Scholar
  29. Nash, T. H., Gries, C., Zschau, T., Getty, S., Ameron, Y., & Zambrano, A. (2003). Historical patterns of metal atmospheric deposition to the epilithic lichen Xanthoparmelia in Maricopa County, Arizona, USA. Journal de Physique. IV, 107, 921–924 (Part 2).CrossRefGoogle Scholar
  30. Neff, H. (1992). Introduction. In H. Neff (Ed.), Chemical characterization of ceramic pastes in archaeology (pp. 1–10). Madison, Wisconsin: Prehistory.Google Scholar
  31. Neff, H. (2000). Neutron activation analysis for provenance determination in archaeology. In E. Ciliberto, & G. Spoto (Ed.), Modern analytical methods in art and archaeology (pp. 81–134). New York:Wiley.Google Scholar
  32. Nevada State Health Division (2004). New childhood leukemia case confirmed (News Release, December 20, 2004). Available at: http://www.health2k.state.nv.us/pio/releases/ 122004PressRelLeukemia.pdf.
  33. Pardus, M. J., Sueker, J. K., & Gass, T. E. (2005). Tungsten: Occurrence, environmental fate, potential ecological and health effects. Abstracts of papers (GEOC 37, [886912]), 230th American Chemical Society Meeting. Washington, District of Columbia: American Chemical Society.Google Scholar
  34. Quevauviller, P., Herzig, R., & Muntau, H. (1996). Certified reference material of lichen (CRM 482) for the quality control of trace element biomonitoring. Science of the Total Environment, 187, 143–152.CrossRefGoogle Scholar
  35. Reid, M., & Thompson, S. (1996). Ecological fieldwork methods. In S. Watts, & L. Halliwell (Eds.), Essential environmental science: Methods & techniques (pp. 351–389). London, England: Routledge.Google Scholar
  36. Reimann, C., & de Caritat, P. (2005). Distinguishing between natural and anthropogenic sources for elements in the environment: Regional geochemical surveys versus enrichment factors. Science of the Total Environment, 337, 91–107.CrossRefGoogle Scholar
  37. Reno Gazette-Journal (2006). Kennametal announces $1.67 million expansion at north plant (2 June).Google Scholar
  38. Richardson, D. H. S. (1992). Pollution monitoring with lichens (p. 76). Slough, England: Richmond.Google Scholar
  39. Richardson, D. H. S. (1995). Metal uptake in lichens. Symbiosis, 18, 119–127.Google Scholar
  40. Scerbo, R., Possenti, L., Lampugnani, L., Ristori, T., Barale, R., & Barghigiani, C. (1999). Lichen (Xanthoria parientina) biomonitoring of trace element contamination and air quality assessment in Livorno Province (Tuscany, Italy). Science of the Total Environment, 241, 91–106.CrossRefGoogle Scholar
  41. Seiler, R. L. (2004). Temporal changes in water quality at a childhood leukemia cluster. Ground Water, 42, 446–455.CrossRefGoogle Scholar
  42. Seiler, R. L., Stollenwerk, K. G., & Garbarino, J. R. (2005). Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada. Applied Geochemistry, 20, 423–441.CrossRefGoogle Scholar
  43. Sensen, M., & Richardson, D. H. S. (2002). Mercury levels in lichens from different post trees around a chlor-alkali plant in New Brunswick, Canada. Science of the Total Environment, 293, 31–45.CrossRefGoogle Scholar
  44. Sheppard, P. R., Ridenour, G., Speakman, R. J., & Witten, M. L. (2006a). Elevated tungsten and cobalt in airborne particulates in Fallon, Nevada: Possible implications for the childhood leukemia cluster. Applied Geochemistry, 21, 152–165.CrossRefGoogle Scholar
  45. Sheppard, P. R., Speakman, R. J., Ridenour, G., & Witten, M. L. (2006b). Reply to comment on “Elevated tungsten and cobalt in airborne particulates in Fallon, Nevada: Possible implications for the childhood leukemia cluster”, by R. Seiler. Applied Geochemistry, 21, 715–723.CrossRefGoogle Scholar
  46. Sheppard, P. R., Speakman, R. J., Ridenour, G., & Witten, M. L. (2006c). Reply to comment on “Elevated tungsten and cobalt in airborne particulates in Fallon, Nevada: Possible implications for the childhood leukemia cluster”, by Blasland, Bouck & Lee, Inc. Applied Geochemistry, 21, 1083–1088.CrossRefGoogle Scholar
  47. Sokal, R. R., & Rohlf, F. J. (1981). Biometry (p. 859). San Francisco, California: Freeman.Google Scholar
  48. Stager, H. K., & Tingley, J. V. (1988). Tungsten deposits in Nevada (p. 256). Reno, Nevada: Nevada Bureau of Mines and Geology Bulletin 105, University of Nevada – Reno School of Mines.Google Scholar
  49. Steinmaus, C., Lu, M., Todd, R. L., & Smith, A. H. (2004). Probability estimates for the unique childhood leukemia cluster in Fallon, Nevada, and risks near other U.S. military aviation facilities. Environmental Health Perspectives, 112, 766–771.CrossRefGoogle Scholar
  50. Szczepaniak, K., & Biziuk, M. (2003). Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environmental Research, 93, 221–230.CrossRefGoogle Scholar
  51. US ATSDR (2002). Evaluation of potential exposures from the Fallon JP-8 fuel pipeline. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry. Available: http://www.atsdr.cdc.gov/HAC/PHA/fallonpipe/fallon_toc.html.
  52. US ATSDR (2003a). Surface water, sediment, and biota human exposure pathway analysis for Churchill County: Fallon Leukemia Project, Fallon, Churchill County, Nevada. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry. Available: http://www.atsdr.cdc.gov/HAC/PHA/fallonwater/finalwater.pdf.
  53. US ATSDR (2003b). Air exposure pathway and assessment: Fallon Leukemia Cluster Investigation. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry. Available: http://www.atsdr.cdc.gov/HAC/PHA/fallonair/finalair.pdf.
  54. US ATSDR (2003c). Pathway assessment for Churchill County surface soils and residential indoor dust: Fallon leukemia project, Fallon, Churchill County, Nevada. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry. Available: http://www.atsdr.cdc.gov/HAC/PHA/fallonsoil/finalsoil.pdf.
  55. US CDC (2003a). A cross-sectional exposure assessment of environmental exposures in Churchill County, Nevada. US Centers for Disease Control and Prevention. Available: http://www.cdc.gov/nceh/clusters/fallon.
  56. US CDC (2003b). Exposure to tungsten in three Nevada communities, report to the Nevada State Health Division. US Centers for Disease Control and Prevention. Available: http://www.cdc.gov/nceh/clusters/fallon/tungsten_report.pdf.
  57. US Census (2000). United States census 2000. Available: http://www.census.gov/main/www/cen2000.html.
  58. US NCI (2003). Age-adjusted SEER incidence and the U.S. death rates and 5-year relative survival rates by primary cancer sites, sex, and time period. SEER cancer statistics review, 1975–2000, table XXVII-3: Childhood cancers. US National Cancer Institute. Available: http://www.seer.cancer.gov.
  59. Wayne, D. M., Diaz, T. A., Fairhurst, R. J., Orndorff, R. L., & Pete, D. V. (2006). Direct major- and trace-element analyses of rock varnish by high resolution laser ablation inductively-coupled plasma mass spectrometry (LA-ICPMS). Applied Geochemistry, 21 1410–1431.Google Scholar
  60. Willden, R., & Speed, R. C. (1974). Geologic map of Churchill County, Nevada. Reno, Nevada: MacKay School of Mines, University of Nevada.Google Scholar
  61. Wolterbeek, B. (2002). Biomonitoring of trace element air pollution: Principles, possibilities and perspectives. Environmental Pollution, 120, 11–21.CrossRefGoogle Scholar
  62. Wolterbeek, H. T., & Bode, P. (1995). Strategies in sampling and sample handling in the context of large-scale plant biomonitoring surveys of trace element air pollution. Science of the Total Environment, 176, 33–43.CrossRefGoogle Scholar
  63. Yenisoy-Karakaş, S., & Tuncel, S. G. (2004). Geographic patterns of elemental deposition in the Aegean region of Turkey indicated by the lichen, Xanthoria parietina (L.) Th. Fr. Science of the Total Environment, 329, 43–60.CrossRefGoogle Scholar
  64. Yun, M., Longerich, H. P., & Wadleigh, M. A. (2003). The determination of 18 trace elements in lichens for atmospheric monitoring using inductively coupled plasma-mass spectrometry. Canadian Journal of Analytical Sciences and Spectroscopy, 48, 171–180.Google Scholar
  65. Zhang, Z. H., Chai, Z. F., Mao, X. Y., & Chen, J. B. (2002). Biomonitoring trace element atmospheric deposition using lichens in China. Environmental Pollution, 120, 157–161.CrossRefGoogle Scholar
  66. Zschau, T., Getty, S., Gries, C., Ameron, Y., Zambrano, A., & Nash III, T. H. (2003). Historical and current atmospheric deposition to the epilithic lichen Xanthoparmelia in Maricopa County, Arizona. Environmental Pollution, 125, 21–30.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Paul R. Sheppard
    • 1
  • Robert J. Speakman
    • 2
  • Gary Ridenour
    • 3
  • Mark L. Witten
    • 4
  1. 1.Laboratory of Tree-Ring ResearchUniversity of ArizonaTucsonUSA
  2. 2.Research Reactor CenterUniversity of MissouriColumbiaUSA
  3. 3.FallonUSA
  4. 4.Department of PediatricsUniversity of ArizonaTucsonUSA

Personalised recommendations