Types of Ectomycorrhiza as Pollution Stress Indicators: Case Studies in Slovenia

  • Hojka Kraigher
  • Samar Al Sayegh Petkovšek
  • Tine Grebenc
  • Primož Simončič
Original Article


Mycorrhiza is the main spatial and temporal linkage between different constituents in a forest ecosystem. The functional compatibility and stress tolerance of ectomycorrhizal types is species specific, and therefore the information on the ectomycorrhizal community structure can add to the understanding of processes in forest ecosystems and can also be applied as tools for bioindication of pollution stress in forest soils. We have studied the effects of pollution (N and S) on trees and forest soils by: (1) quantification of ECM types diversity as in situ indicators in forest stands, (2) determination and quantification of pollution-sensitive or -insensitive ECM types as passive monitors, (3) root growth and development of ECM on nonmycorrhizal spruce seedlings, planted at the studied sites (active monitors), and (4) ECM infection (a bioassay based on mycorrhizal inoculum potential) of seedlings in an experimental set-up as ex situ testers. ECM species richness for Norway spruce trees (Picea abies) showed higher values in unpolluted sites than in polluted ones, while the differences were not significant for European beech trees (Fagus sylvatica). As pollution-sensitive or -insensitive ECM species in spruce forests, we suggest Hydnum rufescens (sensitive) and Paxillus involutus (unsensitive). Mycorrhizal potential in Norway spruce seedlings as a bioassay for soil N and S pollution was effective, and is suggested as an additional, standardized and widely comparable system in bioindication of soil pollution.


Norway spruce European beech Fine root growth Mycoindication Mycorrhizal potential Substrate pollution Types of ectomycorrhiza 


  1. Agerer, R. (1987–2002). Colour atlas of ectomycorrhizae. München: Einhorn-Verlag.Google Scholar
  2. Agerer, R., & Rambold, G. (2004–2005). DEEMY-An information system for characterization and determination of ectomycorrhizae, http://www.deemy.de, Munich: Ludwig-Maximilians University.
  3. Al Sayegh Petkovšek, S. (1997). Mycorrhizal potential of two differently polluted forest sites in the emission region of the Thermal Power Plant Šoštanj. Zbornik gozdarstva in lesarstva, 52, 323–350.Google Scholar
  4. Al Sayegh Petkovšek, S. (2004). Biodiversity of types of ectomycorrhizae in fagus stands in differently polluted forest research plots. Zbornik gozdarstva in lesarstva, 75, 5–19.Google Scholar
  5. Al Sayegh Petkovšek, S. (2005). Belowground ectomycorrhizal fungal communities at fagus stands in differently polluted forest research plots. Zbornik gozdarstva in lesarstva, 76, 5–38.Google Scholar
  6. Al Sayegh Petkovšek, S., & Kraigher, H. (2003). Mycorrhizal potential of two forest research plots with respect to reduction of the emissions from the Thermal Power Plant Šoštanj. Acta Biologica Slovenica, 46, 9–16.Google Scholar
  7. Arndt, U., Nobel, W., & Schweizer, B. (1987). Bioindikatoren-Möglichkeiten, Grenzen und neue Erkentnisse. Stuttgart: Ulmer.Google Scholar
  8. Arnolds, E. (1988). The changing macromycete flora of the Netherlands. Transactions of the British Mycological Society, 90, 391–406.CrossRefGoogle Scholar
  9. Arnolds, E. (1991). Decline of ectomycorrhizal fungi in Europe. Agriculture, Ecosystems and Environment, 35, 209–244.CrossRefGoogle Scholar
  10. Atlas, R., & Bartha, R. (1981). Introduction to microbiology. Reading: Addison-Wesley Publishing Company.Google Scholar
  11. Bakker, M. R. (1999). Fine root parameters as indicators of sustainability of forest ecosystems. Forest Ecology and Management, 122, 7–16.CrossRefGoogle Scholar
  12. Batič, F., & Kralj, T. (1995). Bioindikacija onesnaženosti ozračja v gozdovih z epifitskimi lišaji. Zbornik gozdarstva in lesarstva, 47, 5–56.Google Scholar
  13. Dighton, J. (2003). Fungi in Ecosystem Processes (p. 432). New York: Marcel Dekker Inc.Google Scholar
  14. Dighton, J., & Boddy, L. (1988). Role of fungi in nitrogen, phosphorus and sulphur cycling in temperate forest ecosystems. In L. Boddy, R. Marchant & D. J. Read (Eds.), Nitrogen, phosphorus and sulphur utilization by fungi. Symposium of the BMS (pp. 269–299). Cambridge: Cambridge Univ. Press.Google Scholar
  15. Erland, S., & Taylor, A. F. S. (2002). Diversity of ectomycorrhizal fungal communities in relation to the abiotic environment. In M. van der Heijden & T. Sanders (Eds.), The ecology of ectomycorrhizas. Ecological studies Series, Volume 157, Chapter 7 (pp. 163–193). Springer Verlag.Google Scholar
  16. Fellner, R. (1989). Mycorrhiza-forming fungi as bioindicators of air pollution. Agriculture, Ecosystems and Environment, 28, 115–120.CrossRefGoogle Scholar
  17. Fellner, R, & Peškova, V. (1995). Effects of industrial pollutants on ectomycorrhizal relationships in temperate forest. Canadian Journal of Botany, 73(Suppl. 1), 1310–1315.Google Scholar
  18. Gadd, G. M. (2005). Microorganisms in toxic metal-polluted soils. In F. Buscot & Varma A. (Eds.), Microorganisms in soils: Roles in Genesis and functions, soil biology, volume 3 (pp. 325–356). Berlin Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  19. Gardes, M., & Bruns, T. D. (1993). ITS primers with enchanced specificity for basidiomycetes-application to the identification of ectomycorrhizae and rusts. Molecular Ecology, 2, 113–118.Google Scholar
  20. Gianinazzi-Pearson, V. (1984). Host-fungus specifity, recognition and compatibility in Mycorrhizae. In D. P. S. Verma & T. Hohn (Eds.), Genes involved in Microbe-plant interactions (pp. 225–254). Wien: Springer-Verlag.Google Scholar
  21. Grebenc, T. (2005). Tipi ektomikorize na bukvi (Fagus sylvatica L.) v naravnem in gospodarskem gozdu : doktorska disertacija = Types of ectomycorrhizae on beech (Fagus sylvatica L.) in natural and managed forest : doctoral dissertation. Ljubljana: 174 pp. http://www.digitalna-knjiznica.bf.uni-lj.si/dd_grebenc_tine.pdf.
  22. Grebenc, T., & Kraigher, H. (2006). Types of ectomycorrhiza of mature beech and spruce at ozone-fumigated and control forest plots. EMAS (this volume).Google Scholar
  23. Grebenc, T., Piltaver, A., & Kraigher, H. (2000). Establishment of a PCR-RFLP library for basidiomycetes, ascomycetes and their ectomycorrhizae on Picea abies (L.) Karst. Phyton (Horn, Austria), 40, 79–82.Google Scholar
  24. Grimond, P. A. D. (1998). Taxotron user’s manual (p. 125). Paris: Institute Pasteur.Google Scholar
  25. Hodge, A. (2004). The plastic plant: Root responses to heterogenous supplies of nutrients. New Phytologist, 162, 9–24.CrossRefGoogle Scholar
  26. Jaenike, J. (1991). Mass extinction of European fungi. Tree, 6, 174–175.Google Scholar
  27. Kårén, O., Hogberg, N., Dahlberg, A., Jonsson, L., & Nylund, J. E. (1997). Inter- and intraspecific variation in the ITS region of rDNA of ectomycorrhizal fungi in Fennoscandia as detected by endonuclease analysis. New Phytologist, 136, 313–325.CrossRefGoogle Scholar
  28. Kovacs, G., Pausch, M., & Urban, A. (2000). Diversity of Ectomycorhizal Morphotypes and Oak Decline. Phyton (Horn, Austria), 40(4), 109–116.Google Scholar
  29. Kraigher, H. (1999). Diversity of types of Ectomycorrhizae on Norway spruce in Slovenia. Phyton (Horn, Austria), 39, 199–202.Google Scholar
  30. Kraigher, H., Agerer, R., & Javornik, B. (1995). Ectomycorrhiza of Lactarius lignyotus on Norway spruce, characterised by anatomical and molecular tools. Mycorrhiza, 5, 175–180.CrossRefGoogle Scholar
  31. Kraigher, H., Batič, F., & Agerer, R. (1996). Types of ectomycorrhizae and mycobioindication of forest site pollution. Phyton (Horn, Austria), 36, 115–120.Google Scholar
  32. Kropaček, K., Kristinova M., Chemelikova, E., & Cudlin, P. (1989). The mycorrhizal inoculation potential of forest soils exposed to different pollutions stress. Agriculture, Ecosystems and Environment, 28, 217–277.Google Scholar
  33. Simončič, P. (2000). Soil characteristics of the research plots in Zavodnje in the emmission area of the thermal power plant Šoštanj. In H. Kraigher & I. Smolej (Eds.), The Rhizosphere, Professional and Scientific Works 118 (pp. 77–88). Ljubljana: Slovenian Forestry Institute.Google Scholar
  34. Simončič, P. (2001). Soil solution quality and soil characteristics with regard to clear cutting. Glasnik za šumske pokuse, 38, 159–166.Google Scholar
  35. Simončič, P., Smolej, I., Kalan, P., Mavsar, R., & Levanič, T. (2004). Intensive monitoring in Slovenia (IMP-SI) : First annual report (2003) (p. 29). Ljubljana: Slovenian Forestry Institute; Wageningen: Alterra.Google Scholar
  36. Smith, S. E., & Read, D. J. (1997). Mycorrhizal symbiosis (p. 605). Cambridge: Academic Press.Google Scholar
  37. Smolej, I., Urbančič, M., Simončič, P., & Kutnar, L. (2000). Natural conditions and forest history of research plots. In H. Kraigher & I. Smolej (Eds.), The Rhizosphere, Professional and Scientific Works 118 (pp. 13–26). Slovenian Forestry Institute: Ljubljana.Google Scholar
  38. Tausz, M., Batič, F., & Grill, D. (1996). Bioindication at forest sites-concepts, practice and outlook. Phyton (Horn,Austria), 36, 7–14.Google Scholar
  39. Taylor, A. F. S., & Alexander, I. (2005). The ectomycorrhizal symbiosis: Life in the real world. Mycologist, 19, 102–112.CrossRefGoogle Scholar
  40. Taylor, A. F. S., Martin, F., & Read, D. J. (2000). Fungal diversity in ecto-mycorrhizal communities of Norway spruce (Picea abies (L.) Karst.) and Beech (Fagus sylvatica L.) along north-south transects in Europe. In E. D. Shulze (Ed.), Ecological studies, vol. 142 (pp. 343–365). Berlin Heilderberg New York: Springer.Google Scholar
  41. Vidergar Gorjup, N., & Batič, F. (1999). Natural allotments, environmental pollution, and state of vegetation in Zasavje area. Gozdarski vestnik, 57, 80–91.Google Scholar
  42. Vuković, N. (2003). Bioindication of stress in different forest sites with exposure of one year old spruce seedlings. Graduation thesis, Biotechnical Faculty, University of Ljubljana.Google Scholar
  43. Waller, K., Agerer, R., Brand, F., Taylor, A. F. S., & Wanner, G. (1993). Piceirhiza oleiferans, eine neue Ektomykorrhizen-Art an Picea abies. Sendtnera, 1, 11–22.Google Scholar
  44. White, T. J., Bruns, T., Lee, S., & Taylor J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White (Eds.), PCR Protocols. A guide to methods and applications (pp. 315–322). San Diego: Academic Press.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • Hojka Kraigher
    • 1
  • Samar Al Sayegh Petkovšek
    • 2
  • Tine Grebenc
    • 1
  • Primož Simončič
    • 1
  1. 1.Slovenian Forestry InstituteLjubljanaSlovenia
  2. 2.ERICo Institute, Ecological Research & Industrial CooperationVelenjeSlovenia

Personalised recommendations