Skip to main content

Advertisement

Log in

Types of Ectomycorrhiza as Pollution Stress Indicators: Case Studies in Slovenia

  • Original Article
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mycorrhiza is the main spatial and temporal linkage between different constituents in a forest ecosystem. The functional compatibility and stress tolerance of ectomycorrhizal types is species specific, and therefore the information on the ectomycorrhizal community structure can add to the understanding of processes in forest ecosystems and can also be applied as tools for bioindication of pollution stress in forest soils. We have studied the effects of pollution (N and S) on trees and forest soils by: (1) quantification of ECM types diversity as in situ indicators in forest stands, (2) determination and quantification of pollution-sensitive or -insensitive ECM types as passive monitors, (3) root growth and development of ECM on nonmycorrhizal spruce seedlings, planted at the studied sites (active monitors), and (4) ECM infection (a bioassay based on mycorrhizal inoculum potential) of seedlings in an experimental set-up as ex situ testers. ECM species richness for Norway spruce trees (Picea abies) showed higher values in unpolluted sites than in polluted ones, while the differences were not significant for European beech trees (Fagus sylvatica). As pollution-sensitive or -insensitive ECM species in spruce forests, we suggest Hydnum rufescens (sensitive) and Paxillus involutus (unsensitive). Mycorrhizal potential in Norway spruce seedlings as a bioassay for soil N and S pollution was effective, and is suggested as an additional, standardized and widely comparable system in bioindication of soil pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agerer, R. (1987–2002). Colour atlas of ectomycorrhizae. München: Einhorn-Verlag.

    Google Scholar 

  • Agerer, R., & Rambold, G. (2004–2005). DEEMY-An information system for characterization and determination of ectomycorrhizae, http://www.deemy.de, Munich: Ludwig-Maximilians University.

  • Al Sayegh Petkovšek, S. (1997). Mycorrhizal potential of two differently polluted forest sites in the emission region of the Thermal Power Plant Šoštanj. Zbornik gozdarstva in lesarstva, 52, 323–350.

    Google Scholar 

  • Al Sayegh Petkovšek, S. (2004). Biodiversity of types of ectomycorrhizae in fagus stands in differently polluted forest research plots. Zbornik gozdarstva in lesarstva, 75, 5–19.

    Google Scholar 

  • Al Sayegh Petkovšek, S. (2005). Belowground ectomycorrhizal fungal communities at fagus stands in differently polluted forest research plots. Zbornik gozdarstva in lesarstva, 76, 5–38.

    Google Scholar 

  • Al Sayegh Petkovšek, S., & Kraigher, H. (2003). Mycorrhizal potential of two forest research plots with respect to reduction of the emissions from the Thermal Power Plant Šoštanj. Acta Biologica Slovenica, 46, 9–16.

    Google Scholar 

  • Arndt, U., Nobel, W., & Schweizer, B. (1987). Bioindikatoren-Möglichkeiten, Grenzen und neue Erkentnisse. Stuttgart: Ulmer.

    Google Scholar 

  • Arnolds, E. (1988). The changing macromycete flora of the Netherlands. Transactions of the British Mycological Society, 90, 391–406.

    Article  Google Scholar 

  • Arnolds, E. (1991). Decline of ectomycorrhizal fungi in Europe. Agriculture, Ecosystems and Environment, 35, 209–244.

    Article  Google Scholar 

  • Atlas, R., & Bartha, R. (1981). Introduction to microbiology. Reading: Addison-Wesley Publishing Company.

    Google Scholar 

  • Bakker, M. R. (1999). Fine root parameters as indicators of sustainability of forest ecosystems. Forest Ecology and Management, 122, 7–16.

    Article  Google Scholar 

  • Batič, F., & Kralj, T. (1995). Bioindikacija onesnaženosti ozračja v gozdovih z epifitskimi lišaji. Zbornik gozdarstva in lesarstva, 47, 5–56.

    Google Scholar 

  • Dighton, J. (2003). Fungi in Ecosystem Processes (p. 432). New York: Marcel Dekker Inc.

    Google Scholar 

  • Dighton, J., & Boddy, L. (1988). Role of fungi in nitrogen, phosphorus and sulphur cycling in temperate forest ecosystems. In L. Boddy, R. Marchant & D. J. Read (Eds.), Nitrogen, phosphorus and sulphur utilization by fungi. Symposium of the BMS (pp. 269–299). Cambridge: Cambridge Univ. Press.

    Google Scholar 

  • Erland, S., & Taylor, A. F. S. (2002). Diversity of ectomycorrhizal fungal communities in relation to the abiotic environment. In M. van der Heijden & T. Sanders (Eds.), The ecology of ectomycorrhizas. Ecological studies Series, Volume 157, Chapter 7 (pp. 163–193). Springer Verlag.

  • Fellner, R. (1989). Mycorrhiza-forming fungi as bioindicators of air pollution. Agriculture, Ecosystems and Environment, 28, 115–120.

    Article  Google Scholar 

  • Fellner, R, & Peškova, V. (1995). Effects of industrial pollutants on ectomycorrhizal relationships in temperate forest. Canadian Journal of Botany, 73(Suppl. 1), 1310–1315.

    Google Scholar 

  • Gadd, G. M. (2005). Microorganisms in toxic metal-polluted soils. In F. Buscot & Varma A. (Eds.), Microorganisms in soils: Roles in Genesis and functions, soil biology, volume 3 (pp. 325–356). Berlin Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Gardes, M., & Bruns, T. D. (1993). ITS primers with enchanced specificity for basidiomycetes-application to the identification of ectomycorrhizae and rusts. Molecular Ecology, 2, 113–118.

    CAS  Google Scholar 

  • Gianinazzi-Pearson, V. (1984). Host-fungus specifity, recognition and compatibility in Mycorrhizae. In D. P. S. Verma & T. Hohn (Eds.), Genes involved in Microbe-plant interactions (pp. 225–254). Wien: Springer-Verlag.

    Google Scholar 

  • Grebenc, T. (2005). Tipi ektomikorize na bukvi (Fagus sylvatica L.) v naravnem in gospodarskem gozdu : doktorska disertacija = Types of ectomycorrhizae on beech (Fagus sylvatica L.) in natural and managed forest : doctoral dissertation. Ljubljana: 174 pp. http://www.digitalna-knjiznica.bf.uni-lj.si/dd_grebenc_tine.pdf.

  • Grebenc, T., & Kraigher, H. (2006). Types of ectomycorrhiza of mature beech and spruce at ozone-fumigated and control forest plots. EMAS (this volume).

  • Grebenc, T., Piltaver, A., & Kraigher, H. (2000). Establishment of a PCR-RFLP library for basidiomycetes, ascomycetes and their ectomycorrhizae on Picea abies (L.) Karst. Phyton (Horn, Austria), 40, 79–82.

    CAS  Google Scholar 

  • Grimond, P. A. D. (1998). Taxotron user’s manual (p. 125). Paris: Institute Pasteur.

    Google Scholar 

  • Hodge, A. (2004). The plastic plant: Root responses to heterogenous supplies of nutrients. New Phytologist, 162, 9–24.

    Article  Google Scholar 

  • Jaenike, J. (1991). Mass extinction of European fungi. Tree, 6, 174–175.

    Google Scholar 

  • Kårén, O., Hogberg, N., Dahlberg, A., Jonsson, L., & Nylund, J. E. (1997). Inter- and intraspecific variation in the ITS region of rDNA of ectomycorrhizal fungi in Fennoscandia as detected by endonuclease analysis. New Phytologist, 136, 313–325.

    Article  Google Scholar 

  • Kovacs, G., Pausch, M., & Urban, A. (2000). Diversity of Ectomycorhizal Morphotypes and Oak Decline. Phyton (Horn, Austria), 40(4), 109–116.

    Google Scholar 

  • Kraigher, H. (1999). Diversity of types of Ectomycorrhizae on Norway spruce in Slovenia. Phyton (Horn, Austria), 39, 199–202.

    Google Scholar 

  • Kraigher, H., Agerer, R., & Javornik, B. (1995). Ectomycorrhiza of Lactarius lignyotus on Norway spruce, characterised by anatomical and molecular tools. Mycorrhiza, 5, 175–180.

    Article  Google Scholar 

  • Kraigher, H., Batič, F., & Agerer, R. (1996). Types of ectomycorrhizae and mycobioindication of forest site pollution. Phyton (Horn, Austria), 36, 115–120.

    Google Scholar 

  • Kropaček, K., Kristinova M., Chemelikova, E., & Cudlin, P. (1989). The mycorrhizal inoculation potential of forest soils exposed to different pollutions stress. Agriculture, Ecosystems and Environment, 28, 217–277.

    Google Scholar 

  • Simončič, P. (2000). Soil characteristics of the research plots in Zavodnje in the emmission area of the thermal power plant Šoštanj. In H. Kraigher & I. Smolej (Eds.), The Rhizosphere, Professional and Scientific Works 118 (pp. 77–88). Ljubljana: Slovenian Forestry Institute.

    Google Scholar 

  • Simončič, P. (2001). Soil solution quality and soil characteristics with regard to clear cutting. Glasnik za šumske pokuse, 38, 159–166.

    Google Scholar 

  • Simončič, P., Smolej, I., Kalan, P., Mavsar, R., & Levanič, T. (2004). Intensive monitoring in Slovenia (IMP-SI) : First annual report (2003) (p. 29). Ljubljana: Slovenian Forestry Institute; Wageningen: Alterra.

  • Smith, S. E., & Read, D. J. (1997). Mycorrhizal symbiosis (p. 605). Cambridge: Academic Press.

    Google Scholar 

  • Smolej, I., Urbančič, M., Simončič, P., & Kutnar, L. (2000). Natural conditions and forest history of research plots. In H. Kraigher & I. Smolej (Eds.), The Rhizosphere, Professional and Scientific Works 118 (pp. 13–26). Slovenian Forestry Institute: Ljubljana.

    Google Scholar 

  • Tausz, M., Batič, F., & Grill, D. (1996). Bioindication at forest sites-concepts, practice and outlook. Phyton (Horn,Austria), 36, 7–14.

    Google Scholar 

  • Taylor, A. F. S., & Alexander, I. (2005). The ectomycorrhizal symbiosis: Life in the real world. Mycologist, 19, 102–112.

    Article  Google Scholar 

  • Taylor, A. F. S., Martin, F., & Read, D. J. (2000). Fungal diversity in ecto-mycorrhizal communities of Norway spruce (Picea abies (L.) Karst.) and Beech (Fagus sylvatica L.) along north-south transects in Europe. In E. D. Shulze (Ed.), Ecological studies, vol. 142 (pp. 343–365). Berlin Heilderberg New York: Springer.

    Google Scholar 

  • Vidergar Gorjup, N., & Batič, F. (1999). Natural allotments, environmental pollution, and state of vegetation in Zasavje area. Gozdarski vestnik, 57, 80–91.

    Google Scholar 

  • Vuković, N. (2003). Bioindication of stress in different forest sites with exposure of one year old spruce seedlings. Graduation thesis, Biotechnical Faculty, University of Ljubljana.

  • Waller, K., Agerer, R., Brand, F., Taylor, A. F. S., & Wanner, G. (1993). Piceirhiza oleiferans, eine neue Ektomykorrhizen-Art an Picea abies. Sendtnera, 1, 11–22.

    Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White (Eds.), PCR Protocols. A guide to methods and applications (pp. 315–322). San Diego: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojka Kraigher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraigher, H., Al Sayegh Petkovšek, S., Grebenc, T. et al. Types of Ectomycorrhiza as Pollution Stress Indicators: Case Studies in Slovenia. Environ Monit Assess 128, 31–45 (2007). https://doi.org/10.1007/s10661-006-9413-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-006-9413-4

Keywords

Navigation