Environmental Monitoring and Assessment

, Volume 126, Issue 1–3, pp 39–53 | Cite as

Paleoecological Assessment of Watershed History in PRIMENet Watersheds at Acadia National Park, USA

  • M. Schauffler
  • S. J. Nelson
  • J. S. Kahl
  • G. L. JacobsonJr
  • T. A. Haines
  • W. A. PattersonIII
  • K. B. Johnson
Original Article


Paleoecological reconstructions of forest stand histories for two upland watersheds at Acadia National Park in Maine were completed to support related watershed chemistry studies. The project hypothesis was that forest type and fire history influence long-term cycling and storage of atmospheric mercury and nitrogen within watersheds. The reconstructions document differences in major vegetation composition and disturbance between the burned and unburned watersheds during the past several centuries. Pollen and charcoal stratigraphies from organic sediment accumulations in forested wet depressions indicate that the present experimental design of contrasting disturbance and forest histories has persisted during recent centuries. The unburned watershed has been dominated by spruce (Picea rubens) and fir (Abies balsamea) for 500 years or more and has not recently burned or been substantially cleared. The burned watershed is dominated by a heterogeneous forest of patchy hardwood, mixed wood, and softwood stands. A large portion of this watershed burned severely in 1947 and probably more than once in the 1800s, and has supported heterogeneous successional forests for 200 years or longer. Overall, these results support the underlying premise that the experimental design of this watershed research can be used to infer landscape controls on biogeochemical processes.


Acadia National Park Disturbance history Fire history Fossil pollen Maine Paleoecology Pollen stratigraphy Small hollow Soil charcoal Spruce-fir forest 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., et al. (1998). Nitrogen saturation in temperate forest ecosystems. BioScience, 48, 921–934.CrossRefGoogle Scholar
  2. Amirbahman, A., Ruck, P. L., Fernandez, I. J., Haines, T. A., & Kahl, J. S. (2004). The effect of fire on mercury cycling in the soils of forested watersheds: Acadia National Park, Maine, U.S.A. Water, Air and Soil Pollution, 152, 315–331.CrossRefGoogle Scholar
  3. Anderson, R. S., Davis, R. B., Miller, N. G., & Stuckenrath, R. (1986). History of late-and post-glacial vegetation and disturbance around Upper South Branch Pond, northern Maine. Canadian Journal of Botany, 64, 1977–1986.CrossRefGoogle Scholar
  4. Anderson, R. S., Jacobson Jr., G. L., Davis, R. B., & Stuckenrath, R. (1992). Gould Pond, Maine: Late-glacial transitions from marine to upland environments. Boreas, 21, 359–371.CrossRefGoogle Scholar
  5. Barnicle, K. S. (1984). Impacts of the 1947 Bar Harbor fire and post-fire salvage operations on the vegetation of Acadia National Park, Mount Desert Island, Maine. Report to the National Park Service, North Atlantic Region, Office of Scientific Programs.Google Scholar
  6. Calcote, R. (1995). Pollen source area and pollen productivity: Evidence from forest hollows. Journal of Ecology, 83, 591–602.CrossRefGoogle Scholar
  7. Clark, J. S. (1988). Stratigraphic charcoal analysis on petrographic thin sections: Application to fire history in northwestern Minnesota. Quaternary Research, 30, 81–91.CrossRefGoogle Scholar
  8. Clark, J. S., Lynch, J., Stocks, B. J., & Goldammer, J. G. (1998). Relationships between charcoal particles in air and sediments in west-central Siberia. The Holocene, 8, 19–29.CrossRefGoogle Scholar
  9. Clark, J. S., & Patterson III, W. A. (1997). Background and local charcoal in sediments: Scales of fire evidence in the paleorecord. In J. S. Clark, H. Cachier, J. G. Goldammer & B. Stocks (Eds.), Sediment records of biomass Burning and Global Change, NATO ASI series, series I, global environmental change, no. 51 (pp. 23–48). Berlin Heidelberg New York: Springer.Google Scholar
  10. Davis, M. B., Sugita, S. S., Calcote, R. R., Ferrari, J. B., & Frelich, L. E. (1994). Historical development of alternate communities in a hemlock-hardwood forest in northern Michigan, USA. In R. May, N. Webb, & P. Edwards (Eds.), Large-scale ecology and conservation biology (pp. 19–39). Oxford: Blackwell.Google Scholar
  11. Faegri, K., & Iversen, J. (1989). Textbook of pollen analysis. New York: Wiley, 328 pp.Google Scholar
  12. Freedman, B., & Prager, U. (1986). Ambient bulk deposition, throughfall, and stemflow in a variety of forest stands in Nova Scotia. Canadian Journal of Forest Research, 16, 854–860.Google Scholar
  13. Garcia, E., & Carignan, R. (1999). Impact of wildfire and clear-cutting in the boreal forest on methyl mercury in zooplankton. Canadian Journal of Fisheries and Aquatic Sciences, 56(2), 339–345.CrossRefGoogle Scholar
  14. Gilman, R. A., Chapman, C. A., Lowell, T. V., & Borns Jr., H. W. (1988). The geology of mount desert island. Augusta, Maine: Maine Geological Survey, 50 pp.Google Scholar
  15. Goodale, C. L., Aber, J. D., & McDowell, W. H. (2000). The long-term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire. Ecosystems, 3, 433–450.CrossRefGoogle Scholar
  16. Grimm, E. (1994). TILIA and TILIAGRAPH pollen diagramming program. Springfield, Illinois: Illinois State Museum.Google Scholar
  17. Hornbeck, J. W., Bailey, S. W., Buso, D. C., & Shanley, J. B. (1997). Forest Ecology and Management, 93, 73–89.CrossRefGoogle Scholar
  18. Jacobson Jr., G. L., & Bradshaw, R. W. H. (1981). The selection of sites for paleovegetational studies. Quaternary Research, 16, 80–96.CrossRefGoogle Scholar
  19. Johnson, K. B., Haines, T. A., Kahl, J. S., Norton, S. A., Amirbahman, A., & Sheena K. D. (2005). Controls on mercury and methylmercury deposition for two watersheds in Acadia National Park, Maine. Environmental Monitoring and Assessment, this volume.Google Scholar
  20. Kahl, J. S., Nelson, S., Fernandez, I., Haines, T., Norton, S., Wiersma, G. B., et al. (2005). Streamwater chemistry integrates landscape factors in a paired watershed study at Acadia National Park, Maine, USA. Environmental Monitoring and Assessment, this volume.Google Scholar
  21. Likens, G. E., & Bormann, F. H. (1995). Biogeochemistry of a forested ecosystem, 2nd edn. New York: Springer, Berlin Heidelberg New York, 159 pp.Google Scholar
  22. Lubinski, S., Hop, K., & Gawler, S. (2003). U.S. Geological Survey-National Park Service Vegetation Mapping Program, Acadia National Park, Maine. Project Report, Revised Edition-October 2003, U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin and Maine Natural Areas Program, Augusta, Maine: Department of Conservation, 110 pp.Google Scholar
  23. Moore, B., & Taylor, N. (1927). Vegetation of mount desert island, maine, and its environment. Brooklyn Botanic Garden Memoirs, 3, 151.Google Scholar
  24. Nelson, S. J., Johnson, K. B., Kahl, J. S., Haines, T. A., & Fernandez, I. J. (2005). Mass balances of mercury and nitrogen in burned and unburned forested watersheds at Acadia National Park, USA. Environmental Monitoring and Assessment, this volume.Google Scholar
  25. Parker, J., Fernandez, I., Rustad, L., & Norton, S. (2001). Effects of nitrogen enrichment, wildfire, and harvesting on forest soil carbon and nitrogen. Soil Science Society of America Journal, 65, 1248–1255.CrossRefGoogle Scholar
  26. Parker J., Fernandez, I., Rustad, L. E., & Norton, S. A. (2002). Soil organic matter fractions in experimental forested watersheds. Water, Air and Soil Pollution, 138, 101–121.CrossRefGoogle Scholar
  27. Patterson III, W. A., & Backman, A. E. (1988). Fire and disease history of forests. In B. Huntley & T. Webb III (Eds.), Vegetation history (pp. 603–632). Dordrecht: Kluwer.Google Scholar
  28. Patterson III, W. A., Saunders, K. E., & Horton, L. J. (1983). Fire regimes of the coastal Maine forests of Acadia National Park. Report OSS 83-3, U.S.D.I. National Park Service, North Atlantic Region: Office of Scientific Programs, 359 pp.Google Scholar
  29. Rea, A. W., Lindberg, S. E., & Keeler, G. J. (2000). Assessment of dry deposition and foliar leaching of mercury and selected trace elements based on washed foliar and surrogate surfaces. Environmental Science and Technology, 34, 2418–2425.CrossRefGoogle Scholar
  30. Rustad, L. E., Kahl, J. S., Norton, S. A., & Fernandez, I. J. (1994). Underestimation of dry deposition by throughfall in mixed northern hardwood forests. Journal of Hydrology, 162, 319–336.CrossRefGoogle Scholar
  31. Schauffler, M., & Jacobson Jr., G. L. (2002). Persistence of coastal spruce refugia during the Holocene in northern New England, USA, detected by stand-scale pollen stratigraphies. Journal of Ecology, 90, 235–250.CrossRefGoogle Scholar
  32. Schauffler, M., Nelson, S. J., Johnson, K. B., Kahl, J. S., & Jacobson Jr., G. L. (2002). Paleoecological assessment of forest-disturbance in upper Hadlock Brook and upper Cadillac Brook watersheds, Unpublished report to National Park Service.Google Scholar
  33. Stockmarr, J. (1972). Tablets with spores used in absolute pollen analysis. Pollen Spores, 13, 615–621.Google Scholar
  34. Sugita, S. (1995). Pollen representation of vegetation in Quaternary sediments: Theory and method in patchy vegetation. Journal of Ecology, 82, 879–898.Google Scholar
  35. Swain, A. M. (1973). A history of fire and vegetation in northeastern Minnesota as recorded in lake sediments. Quaternary Research, 3, 383–396.CrossRefGoogle Scholar
  36. Talma, A. S., & Vogel, J. C. (1993). A simplified approach to calibrating 14C dates. Radiocarbon, 35, 317–322.Google Scholar
  37. Vogel, J. C., Fuls, A., Visser, E., & Becker, B. (1993). Pretoria calibration curve for short-lived samples. Radiocarbon, 35, 73–86.Google Scholar
  38. Weathers, K. C., Lovett, G. M., Likens, G. E., & Lathrop, R. (2000). The effect of landscape features on atmospheric deposition to the Hunter Mountain region, Catskill Mountains, New York. Ecological Applications, 10, 528–540.CrossRefGoogle Scholar
  39. Wein, R. W., Burzynski, M. P., Sreenivasa, B. A., & Tolonen, K. (1987). Bog profile evidence of fire and vegetation dynamics since 3000 years BP in the Acadian forest. Canadian Journal of Botany, 65, 1180–1186.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • M. Schauffler
    • 1
    • 5
  • S. J. Nelson
    • 1
  • J. S. Kahl
    • 1
    • 3
  • G. L. JacobsonJr
    • 1
  • T. A. Haines
    • 1
    • 4
  • W. A. PattersonIII
    • 2
  • K. B. Johnson
    • 1
  1. 1.College of Natural ResourcesUniversity of MaineOronoUSA
  2. 2.Department of Natural Resources ConservationUniversity of MassachusettsAmherstUSA
  3. 3.Center for the EnvironmentPlymouth State UniversityPlymouthUSA
  4. 4.Department of Biological SciencesUniversity of MaineOronoUSA
  5. 5.Department of Earth Sciences, Bryand Global Sciences CenterUniversity of MaineOronoUSA

Personalised recommendations