Environmental Monitoring and Assessment

, Volume 127, Issue 1–3, pp 435–444 | Cite as

Monitoring the formation of trihalomethanes in the effluents from a shrimp hatchery

  • Dilma Budziak
  • Lamartine Richard Junior
  • Elpídio Beltrame
  • Eduardo Carasek
Original Article


Formation of trihalomethanes (THM) was monitored at the Laboratório de Camarões Marinhos (LCM) from the Universidade Federal de Santa Catarina. THM could be present because chlorinated effluents from disinfection are discharged from the different hatchery rooms. THM quantification was done through an analytical methodology using Purge&Trap coupled with a gas chromatograph equipped with an electron capture detector. Relative standard deviation (RSD), limit of detection (LOD) and limit of quantification (LOQ) for the methodology corresponded to the ranges of 8–17%; 0.01–0.03 μg L−1 and 0.03–0.08 μg L−1, respectively. Linear working range was of 0.1–8.0 μg L−1 for all compounds. Enrichment and recovery method was applied to evaluate possible matrix effects and the results varied from 71.2% to 107.9%. LCM was monitored between August and December, 2004. This study showed that THM did not increase with the increase in postlarvae production and also that the aquatic life and the surrounding environment were not affected.


Trihalomethanes Sea water Purge&Trap Gas chromatography Sample preparation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allonier, A., Khalanski, M., Bermond, A., & Camel, V. (2000). Determination of trihalomethanes in chlorinated sea water samples using a purge-and-trap system coupled to gas chromatography. Talanta, 51, 467–477.CrossRefGoogle Scholar
  2. Batterman, S., Zhang, L., Wang, S., & Franzblau, A. (2002). Partition coefficients for the trihalomethanes among blood, urine, water, milk and air. Science of the Total Environment, 284(1–3), 237–247.CrossRefGoogle Scholar
  3. Biziuk, M., Namiesnik, J., Czerwinski, J., Gorlo, D., Makuch, B., Janicki, W., Polkowska, Z., & Wolska, L. (1996). Occurrence and determination of organic pollutants in tap and surface waters of the Gdansk district. Journal of Chromatography A, 733(1+2), 171–183.CrossRefGoogle Scholar
  4. Campillo, N., Viñas, P., López-Garcia, I., Aguinaga, N., & Hernández-Córdoba, M. (2004). Determination of volatile halogenated organic compounds in soils by purge-and-trap capillary gas chromatography with atomic emission detection. Talanta, 64(3), 584–589.CrossRefGoogle Scholar
  5. Campillo, N., Viñas, P., López-Garcia, I., Aguinaga, N., & Hernández-Córdoba, M. (2004). Purge-and-trap capillary gas chromatography with atomic emission detection for volatile halogenated organic compounds determination in water and beverages. Journal of Chromatography A, 1035, 1–8.CrossRefGoogle Scholar
  6. Cho, D., Kong, S., & Oh, S. (2003). Analysis of trihalomethanes in drinking water using headspace-SPME technique with gas chromatography. Water Research, 37, 402–407.CrossRefGoogle Scholar
  7. Especial ISO 14000 of May/June, 2004 Revista Meio Ambiente Industrial, Ed. Tocalino, ano IX, 49, 230–232.Google Scholar
  8. Fantuzzi, G., Righi, E., Predieri, G., Ceppelli, G., Gobba, F., & Aggazzotti, G. (2001). Occupational exposure to trihalomethanes in indoor swimming pools. Science, of the Total Environment, 264(3), 257–265.CrossRefGoogle Scholar
  9. Golfinopoulos, S.K., Kostopoulou, M.N., & Lekkas, T.D. (1998). Volatile halogenated organics in the water supply system in Athens – Greece. Water Research, 32(6), 1811–1818.CrossRefGoogle Scholar
  10. Golfinopoulos, S.K., Lekkas, T.D., & Nikolaou, A.D. (2001). Comparison of methods for determination of volatile organic compounds in drinking water. Chemosphere, 45(3), 275–284.CrossRefGoogle Scholar
  11. Jenner, H.A., Taylor, C.J.L., van Donk, M., & Khalanski, M. (1997). Chlorination by-products in chlorinated cooling water of some European coastal power stations. Marine Environmental Research, 43(4), 279–293.CrossRefGoogle Scholar
  12. Koester, C.J., & Clement, R.E. (1993). Analysis of Drinking water for trace organics. Critical Review Analytical. Chemistry, 24(4), 263–316.Google Scholar
  13. Lee, S.C., Guo, H., Lam, S.M.J., & Lau, S.L.A. (2004). Multipathway risk assessment on disinfection by-products of drinking water in Hong Kong. Environmental Research, 94, 47–55.CrossRefGoogle Scholar
  14. Namiesnik, J., Gorecki, T., & Biziuk, M. (1990). Isolation and preconcentration of volatile organic compounds from water. Anal Chim Acta, 237, 1–60.CrossRefGoogle Scholar
  15. Poli, C.R., Poli, A.T.B., Andreatta, E., & Beltrame, E. (2004). Aqüicultura – Experiências Brasileiras. Multitarefa Editora Ltda, 105, 212.Google Scholar
  16. Purge and Trap Concentrator Tekmar 3100 – User Manual – Cincinnati, Ohio (1998–1999) 1–2.Google Scholar
  17. Ribani, M., Bottoli, C.B.G., Collins, C.H., Jardim, I.C.S.F., & Melo, L.F.C. (2004). Validaccão em métodos cromato-gráficos e eletroforéticos. Química Nova, 27(5), 777–778.CrossRefGoogle Scholar
  18. Stack, M.A., Fitzgerald, G., O'Connell, S., & James, K.J. (2000). Measurement of trihalomethanes in potable and recreational waters using solid phase micro extraction with gas chromatography-mass spectrometry. Chemosphere, 41, 1821–1826.CrossRefGoogle Scholar
  19. Valente, A.L.P., Augusto, F., Montero, L., & Rocha, E.C. (1998). Aplicaccão de SPME (solid phase micro- extraction) na análise de águas potáveis de três localidades do Estado de São Paulo. Química Nova, 21(6), 804– 806.CrossRefGoogle Scholar
  20. Zhao, R., Lao, W., & Xu, X. (2004). Headspace liquid-phase microextraction of trihalomethanes in drinking water and their gas chromatographic determination. Talanta, 62, 751–755.CrossRefGoogle Scholar
  21. Zygmunt, B. (1996). Determination of trihalomethanes in aqueous samples by means of a purge-and-trap system with on-sorbent focusing coupled to gas chromatography with electron-capture detection. Journal of Chromatography A, 725(1), 175–163.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Dilma Budziak
    • 1
  • Lamartine Richard Junior
    • 2
  • Elpídio Beltrame
    • 2
  • Eduardo Carasek
    • 1
  1. 1.Departamento de QuímicaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Departamento de AqüiculturaUniversidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations