Advertisement

Environmental Monitoring and Assessment

, Volume 112, Issue 1–3, pp 159–176 | Cite as

Benthic Impacts of Intertidal Oyster Culture, with Consideration of Taxonomic Sufficiency

  • Barrie M. Forrest
  • Robert G. Creese
Article

Abstract

An investigation of the impacts from elevated intertidal Pacific oyster culture in a New Zealand estuary showed enhanced sedimentation beneath culture racks compared with other sites. Seabed elevation beneath racks was generally lower than between them, suggesting that topographic patterns more likely result from a local effect of rack structures on hydrodynamic processes than from enhanced deposition. Compared with control sites, seabed sediments within the farm had a greater silt/clay and organic content, and a lower redox potential and shear strength. While a marked trend in macrofaunal species richness was not evident, species composition and dominance patterns were consistent with a disturbance gradient, with farm effects not evident 35 m from the perimeter of the racks. Of the environmental variables measured, sediment shear strength was most closely associated with the distribution and density of macrofauna, suggesting that human-induced disturbance from farming operations may have contributed to the biological patterns. To evaluate the taxonomic sufficiency needed to document impacts, aggregation to the family level based on Linnean classification was compared with an aggregation scheme based on `general groups' identifiable with limited taxonomic expertise. Compared with species-level analyses, spatial patterns of impact were equally discernible at both aggregation levels used, provided density rather than presence/absence data were used. Once baseline conditions are established and the efficacy of taxonomic aggregation demonstrated, a `general group' scheme provides an appropriate and increasingly relevant tool for routine monitoring.

Keywords

aquaculture benthic impacts estuary monitoring New Zealand Pacific oyster taxonomic sufficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beukema, J. J.: 1988, ‘An evaluation of the ABC-method (abundance/biomass comparison) as applied to macrozoobenthic communities living on the tidal flats in the Dutch Wadden Sea’, Mar. Biol. 99, 425-433.CrossRefGoogle Scholar
  2. Broman, D., Kugelberg, J. and Näf, C.: 1990, ‘Two hydrodynamically stable self-suspended buoyant sediment traps’, Estuar. Coast. Shelf Sci. 30, 429–436.Google Scholar
  3. Brooks, K. M., Stierns, A. R., Mahnken, C. V. W. and Blackburn, D. B.: 2003, ‘Chemical and biological remediation of the benthos near Atlantic salmon farms’, Aquaculture 219, 355–377.CrossRefGoogle Scholar
  4. Byers, S. C., Mills, E. L. and Stewart, P. L.: 1978, ‘A comparison of methods of determining organic carbon in marine sediments, with suggestions for a standard method’, Hydrobiologia 58, 43–47.CrossRefGoogle Scholar
  5. Carver, R. E.: 1971, Procedures in Sedimentary Petrology, Wiley-Interscience, New York. 653 pp.Google Scholar
  6. Castel, J., Labourge, J. P., Escaravage, V., Auby, I. and Garcia, M. E.: 1989, ‘Influence of seagrass and oyster parks on the abundance and biomass patterns of meio- and macrobenthos in tidal flats’, Estuar. Coast. Shelf Sci. 28, 71–85.Google Scholar
  7. Clarke, K. R.: 1990, ‘Comparisons of dominance curves’, J. Exp. Mar. Biol. Ecol. 138, 143–157.Google Scholar
  8. Clarke, K.R. and Ainsworth, M.: 1993, ‘A method of linking multivariate community structure to environmental variables’, Mar. Ecol. Prog. Ser. 92, 205–219.Google Scholar
  9. Clarke, K. R. and Warwick, R. M.: 1994, Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation, Natural Environment Research Council, UK, 144 pp.Google Scholar
  10. Crawford, C. M., Macleod, C. K. A. and Mitchell, I. M.: 2003, ‘Effects of shellfish farming on the benthic environment’, Aquaculture 224, 117–140.CrossRefGoogle Scholar
  11. Dahlbäck, B. and Gunnarsson, L. A. H.: 1981, ‘Sedimentation and sulfate reduction under a mussel culture’, Mar. Biol. 63, 269–275.Google Scholar
  12. Dauer, D. M., Luckenbach, M.W. and Rode A. J. Jr: 1993, ‘Abundance biomass comparison (ABC method): Effects of an estuarine gradient, anoxic/hypoxic events and contaminated sediments’, Mar. Biol. 116, 507–518.CrossRefGoogle Scholar
  13. Dauvin, J. C., Gomez Gesteira, J. L. and Salvande Fraga, M.: 2003, ‘Taxonomic sufficiency: An overview of its use in the monitoring of sublittoral benthic communities after oil spills’, Mar. Poll. Bul. 46, 552–555.Google Scholar
  14. De Grave, S., Moore, S. J. and Burnell, G.: 1998, ‘Changes in benthic macrofauna associated with intertidal oyster, Crassostrea gigas (Thunberg) culture’, J. Shellfish Res. 17, 1137–1142.Google Scholar
  15. DeFur, P. L. and Rader, R. N.: 1995, ‘Aquaculture in estuaries: Feast or famine?’, Estuaries 18, 2–9.Google Scholar
  16. Everett, R. A., Ruiz, G. M. and Carlton, J. T.: 1995, ‘Effects of oyster mariculture on submerged aquatic vegetation: An experimental test in a Pacific northwest estuary’, Mar. Ecol. Prog. Ser. 125, 2205–2217.Google Scholar
  17. Folk, R. L.: 1980, Petrology of Sedimentary Rocks, Hemphill Publishing Company, Texas. 182 pp.Google Scholar
  18. Forrest, B. M. and Blakemore, K. A.: 2003, ‘Inter-regional marine farming pathways for the Asian kelp Undaria pinnatifida’, Cawthron Report 726, 29 pp. plus appendices. Cawthron Institute, Nelson, New Zealand.Google Scholar
  19. Gouleau, D., Ottmann, F. and Sornin, J. M.: 1982, ‘Repercussion de la conchyliculture sur la sédimentation’, in: La gestion régionale des sédiments. Séminaire de Propriano, Documents No. 3, BRGM, 189–198.Google Scholar
  20. Grant, J., Hatcher, A., Scott, D. B., Pocklington, P., Schafer, C. T. and Winters, G. V.: 1995, ‘A multidisciplinary approach to evaluating impacts of shellfish aquaculture on benthic communities’, Estuaries 18, 124–144.Google Scholar
  21. Handley, S.J. and Bergquist, P. R.: 1997, ‘Spionid polychaete infestations of intertidal Pacific oysters Crassostrea gigas (Thunberg), Mahurangi Harbour, northern New Zealand’, Aquaculture 153, 191–205.CrossRefGoogle Scholar
  22. Hargrave, B. T. and Burns, N. M.: 1979, ‘Assessment of sediment trap collection efficiency’, Limnol. Oceanogr. 24, 1124–1136.Google Scholar
  23. Hatcher, A., Grant, J. and Scholfield, B.: 1994, ‘Effects of suspended mussel culture (Mytilus spp.) on sedimentation, benthic respiration and sediment nutrient dynamics in a coastal bay’, Mar. Ecol. Prog. Ser. 115, 219–235.Google Scholar
  24. Haven, D. S. and Morales-Alamo, R.: 1966, ‘Aspects of biodeposition by oysters and other invertebrate filter feeders’, Limnol. Oceanogr. 11, 487–498.CrossRefGoogle Scholar
  25. Ito, S. and Imai, T.: 1955, ‘Ecology of oyster bed I. On the decline of productivity due to repeated cultures’, Tohoku J. Agric. Res. 5, 251–268.Google Scholar
  26. Johnston, R. M. S.: 1984, ‘Sediments and Sedimentary Processes in Mahurangi Harbour’, MSc thesis, University of Waikato, Hamilton, New Zealand, 168 pp.Google Scholar
  27. Kaiser, M. J., Laing, I., Utting, D. and Burnell, G. M.: 1998, ‘Environmental impacts of bivalve mariculture’, J. Shellfish Res. 17, 59–66.Google Scholar
  28. Karakassis, I. and Hatziyanni, E.: 2000, ‘Benthic disturbance due to fish farming analyzed under different levels of taxonomic resolution’, Mar. Ecol. Prog. Ser. 203, 247–253.Google Scholar
  29. Kaspar, H. F., Gillespie, P. A., Boyer, I. C. and MacKenzie, A. L.: 1985, ‘Effects of mussel aquaculture on the nitrogen cycle and benthic communities in Kenepuru Sound, Marlborough Sounds, New Zealand’, Mar. Biol. 85, 127–136.CrossRefGoogle Scholar
  30. Kusuki, Y.: 1981, ‘Fundamental studies on the deterioration of oyster growing grounds’, Bull. Hiroshima Fish. Exper. Stn 11, 1–93.Google Scholar
  31. Mariojouls, C. and Sornin, J. M.: 1986, ‘Sur exploitation et détérioration de la qualité des terrains conchylicoles: Conséquences sur les systèmes d'exploitation – exemples en France et au Japon’, Norois 34, 51–61.Google Scholar
  32. Mattsson, J. and Lindén, O.: 1983, ‘Benthic macrofauna succession under mussels, Mytilus edulis L. (Bivalvia), cultured on hanging long-lines’, Sarsia 68, 97–102.Google Scholar
  33. Maurer, D.: 2000, ‘The dark side of taxonomic sufficiency (TS)’, Mar. Poll. Bul. 40, 98–101.Google Scholar
  34. Nichols, M. M.: 1984, ‘Effects of Fine Sediment Resuspension in Estuaries’, in A. J. Mehta (ed.), Lecture Notes on Coastal and Estuarine Studies 14: Estuarine Cohesive Sediment Dynamics, Springer-Verlag, pp. 5–42.Google Scholar
  35. Nordstrom, D. K.: 1977, ‘Thermochemical redox equilibria of ZoBell's solution’, Geochimica et Cosmochimica Acta 41, 1835–1841.Google Scholar
  36. Nugues, M. M., Kaiser, M. J., Spencer, B. E. and Edwards, D. B.: 1996, ‘Benthic community changes associated with intertidal oyster cultivation’, Aquacult. Res. 27, 913–924.CrossRefGoogle Scholar
  37. Olsgard, F., Somerfield, P. J. and Carr, M. R.: 1997, ‘Relationships between taxonomic resolution and data transformations in analyses of a macrobenthic community along an established pollution gradient’, Mar. Ecol. Prog. Ser. 149, 173–181.Google Scholar
  38. Ottmann, F. and Sornin, J. M.: 1982, ‘Relationship between marine bottom elevation and various types of marine culture’, Atlantica 5, 88–89.Google Scholar
  39. Pearson, T. H. and Rosenberg, R.: 1978, ‘Macrobenthic succession in relation to organic enrichment and pollution of the marine environment’, Oceanogr. Mar. Biol.: An Annu. Rev. 16, 229–311.Google Scholar
  40. Pearson, T. H. and Stanley, S. O.: 1979, ‘Comparative measurement of the redox potential of marine sediments as a rapid means of assessing the effect of organic pollution’, Mar. Biol. 53, 371–379.CrossRefGoogle Scholar
  41. Read, P. and Fernandes, T.: 2003, ‘Management of environmental impacts of marine aquaculture in Europe’, Aquaculture 226, 139–163.CrossRefGoogle Scholar
  42. Richards, A. F. and Parks, J. M.: 1976, ‘Marine Geotechnology: Average Sediment Properties, Selected Literature and Review of Consolidation, Stability, and Bioturbation-geotechnical Interactions in the Benthic Layer’, in I. N. McCave (ed), The Benthic Boundary Layer, Plenum Press, New York, pp. 157–182.Google Scholar
  43. Robertson, B., Gillespie, P., Asher, R., Frisk, S., Keeley, N., Hopkins, G., Thompson, S. and Tuckey, B.: 2002, ‘Estuarine Environmental Assessment and Monitoring: A National Protocol’, Cawthron Report prepared for Ministry for the Environment Sustainable Management Fund Contract No. 5096, Cawthron Institute, Nelson, New Zealand, 93 pp. plus appendices.Google Scholar
  44. Rosenberg, R., Blomqvist, M., Nilsson, H. C., Cederwall, H. and Dimming, A.: 2004, ‘Marine quality assessment by use of benthic species-abundance distributions: A proposed new protocol within the European Union Water Framework Directive’, Mar. Poll. Bul. 49, 728–739.Google Scholar
  45. Simenstad, C. A. and Fresh, K. L.: 1995, ‘Influence of intertidal aquaculture on benthic communities in Pacific Northwest estuaries: scales of disturbance’, Estuaries 18, 43–70.Google Scholar
  46. Somerfield, P. J. and Clarke, K. R.: 1995, ‘Taxonomic levels, in marine community studies, revisited’, Mar. Ecol. Prog. Ser. 127, 113–119.Google Scholar
  47. Sornin, J. M.: 1982, ‘Influences des installations conchylicoles sur l'hydrologie et sur la morphologie des fonds’, Rev. Trav. Inst. Pêches Marit. 45, 127–139.Google Scholar
  48. Sornin, J. M., Delmas, D. and Deslous-Paoli, J. M.: 1987, ‘Evolutions quantitatives et qualitatives du seston dans une claire a huîtres: Relation avec la sedimentation et la biodéposition’, Océanis 13, 531–541.Google Scholar
  49. Spencer, B. E., Kaiser, M. J. and Edwards, D. B.: 1997, ‘Ecological effects of intertidal Manila clam cultivation: Observations at the end of the cultivation phase’, J. Appl. Ecol. 34, 444–452.Google Scholar
  50. Terlizzi, A, Bevilacqua, S., Fraschetti, S. and Boero, F.: 2003, ‘Taxonomic sufficiency and the increasing insufficiency of taxonomic expertise’, Mar. Poll. Bul. 46, 556–561.Google Scholar
  51. Warwick, R. M.: 1986, ‘A new method for detecting pollution effects on marine macrobenthic communities’, Mar. Biol. 92, 557–562.CrossRefGoogle Scholar
  52. Warwick, R. M. and Clarke, K. R.: 1993, ‘Comparing the severity of disturbance: A meta-analysis of marine macrobenthic community data’, Mar. Ecol. Prog. Ser. 92, 221–231.Google Scholar
  53. Warwick, R. M. and Clarke, K. R.: 1994, ‘Relearning the ABC: Taxonomic changes and abundance/biomass relationships in disturbed benthic communities’, Mar. Biol. 118, 739–744.CrossRefGoogle Scholar
  54. Watson, P. G., Frickers, P. E. and Goodchild, C. M.: 1985, ‘Spatial and seasonal variations in the chemistry of sediment interstitial waters in the Tamar estuary’, Estuar. Coast. Shelf Sci. 21, 105–119.Google Scholar
  55. Wildish, D. J., Hargrave, B. T. and Pohle, G.: 2001, ‘Cost-effective monitoring of organic enrichment resulting from salmon mariculture’, ICES J. Mar. Sci. 58, 469–476.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Leigh Marine LaboratoryUniversity of AucklandWarkworthNew Zealand
  2. 2.Cawthron InstituteNelsonNew Zealand
  3. 3.NSW Department of Primary IndustriesPort Stephens Fisheries CentreNelson BayAustralia

Personalised recommendations