Environmental Monitoring and Assessment

, Volume 120, Issue 1–3, pp 187–220 | Cite as

Relationships Between Toxicity and Concentrations of Chemical Contaminants in Sediments from Sydney Harbour, Australia, and Vicinity

  • S. McCready
  • G. F. Birch
  • E. R. Long
  • G. Spyrakis
  • C. R. Greely


Correlation analyses between measures of toxicity and concentrations of chemical contaminants were conducted for 103 surficial sediments from Sydney Harbour, Australia, and vicinity. Toxicity tests consisted of amphipod survival and reburial tests of whole sediments (Corophium colo), sea urchin fertilisation and larval development tests of pore waters (Heliocidaris tuberculata) and microbial bioluminescence (Microtox®) tests of solvent extracts and pore waters. Toxicity in most tests correlated with concentrations of metallic contaminants, in particular, zinc, lead and copper. Organic contaminants did not correlate as significantly with toxicity. However, Heliocidaris tuberculata showed relationships with organochlorine compounds in samples with low to moderate metals contamination. Toxicity in the Microtox® solvent extract test appeared to be primarily influenced by the presence of sulfur. This study has no precedent in Australia and the results support the validity of using local indigenous species in toxicity tests of field-collected sediments. This toxicity/chemistry dataset may be used in evaluations of sediment quality guidelines recently introduced to Australia.


correlation toxicity sediment contaminant Sydney Harbour 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, H. E., Fu, G. and Deng, B.: 1993, ‘Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments’, Environ. Toxicol. Chem. 12, 1441–1453.Google Scholar
  2. ANZECC and ARMCANZ: 2000, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Vol. 1, Section 3.5 – Sediment Quality Guidelines, Australian and New Zealand Environment and Conservation Council, and Agriculture and Resource Management Council of Australia and New Zealand. Canberra, Australia.Google Scholar
  3. ASTM: 1998a, ‘Standard guide for collection, storage, characterization and manipulation of sediments for toxicological testing’, E 1391-94, in 1998 Annual Book of ASTM Standards, Vol. 11.05, ASTM, Philadelphia, PA, U.S.A., pp. 768–788.Google Scholar
  4. ASTM: 1998b, ‘Standard guide for conducting 10-day static sediment toxicity tests with marine and estuarine amphipods’, E 1367 – 92, in 1998 Annual Book of ASTM Standards, Vol. 11.05, ASTM, Philadelphia, PA, U.S.A., pp.732–757.Google Scholar
  5. AZUR: 1995a, Microtox ® Acute Toxicity Basic Test Procedures, AZUR Environmental, Carlsbad, CA, U.S.A., 63pp.Google Scholar
  6. AZUR: 1995b, Microtox ® Acute Toxicity Comparison & Inhibition Test for Fresh Water and Marine Samples, AZUR Environmental, Carlsbad, CA, U.S.A., p. 29.Google Scholar
  7. Carr, R. S. and Chapman, D. C.: 1995, ‘Comparison of methods for conducting marine and estuarine sediment pore water toxicity tests - Extraction, storage, and handling techniques’, Arch. Environ. Contam. Toxicol. 28, 69–77.CrossRefGoogle Scholar
  8. Carr, R. S., Long, E. R., Windom, H. L., Chapman, D. C., Thursby, G., Sloane, G. M. and Wolfe, D. A.: 1996, ‘Sediment quality assessment studies of Tampa Bay, Florida’, Environ. Toxicol. Chem. 15, 1218–1231.CrossRefGoogle Scholar
  9. Di Toro, D. M., Mahony, D. J., Hansen, D. J., Scott, K. B., Hicks, M. B., Mayr, S. M. and Redmond, M. S.: 1990, ‘Toxicity of cadmium in sediments: The role of acid-volatile sulfide’, Environ. Toxicol. Chem. 9, 1487–1502.Google Scholar
  10. Fairey, R., Long, E. R., Roberts, C. A., Anderson, B. S., Phillips, B. M., Hunt, J. W., Puckett, H. R. and Wilson, C. G.: 2001, ‘An evaluation of methods for calculating mean sediment quality guideline quotients as indicators of contamination and acute toxicity to amphipods by chemical mixtures’, Environ. Toxicol. Chem. 20, 2276–2286.CrossRefGoogle Scholar
  11. Fairey, R., Roberts, C., Jacobi, M., Lamerdin, S., Clark, R., Downing, J., Long, E., Hunt, J., Anderson, B., Newman, J., Tjeerdema, R., Stephenson, M. and Wilson, C.: 1998, ‘Assessment of sediment toxicity and chemical concentrations in the San Diego Bay region, California, USA’, Environ. Toxicol. Chem. 17, 1570–1581.CrossRefGoogle Scholar
  12. Ginn, T. C. and Pastorok, R. A.: 1992, ‘Assessment and management of contaminated sediments in Puget Sound’, in: Burton Jr., G. A. (ed.), Sediment Toxicity Assessment, Lewis Publishers, Boca Raton, FL, USA, pp. 371–401.Google Scholar
  13. Hansen, D. J., Berry, W. J., Mahony, J. D., Boothman, W. S., Di Toro, D. M., Robson, D. L., Ankley, G. T., Ma, D., Yan, Q. and Pesch, C. E.: 1996, ‘Predicting the toxicity of metal-contaminated field sediments using interstitial concentration of metals and acid-volatile sulfide normalizations’, Environ. Toxicol. Chem. 15, 2080–2094.CrossRefGoogle Scholar
  14. Hyne, R. V. and Everett, D. A.: 1998, ‘Application of a benthic euryhaline amphipod, Corophium sp., as a sediment toxicity testing organism for both freshwater and estuarine systems’, Arch. Environ. Contam. Toxicol. 34, 26–33.CrossRefGoogle Scholar
  15. Jacobs, M. W., Delfino, J. J. and Bitton, G.: 1992, ‘The toxicity of sulfur to Microtox® from acetonitrile extracts of contaminated sediments’, Environ. Toxicol. Chem. 11, 1137–1143.Google Scholar
  16. Johnson, B. T. and Long, E. R.: 1998, ‘Rapid toxicity assessment of sediments from estuarine ecosystems: A new tandem in vitro testing approach’, Environ. Toxicol. Chem. 17, 1099–1106.CrossRefGoogle Scholar
  17. Kohn, N. P., Word, J. Q., Niyogi, D. K., Ross, L. T., Dillon, T. and Moore, D. W.: 1994, ‘Acute toxicity of ammonia to four species of marine amphipod’, Mar. Environ. Res. 38, 1–15.CrossRefGoogle Scholar
  18. Long, E. R. and MacDonald, D. D.: 1998, ‘Recommended uses of empirically derived sediment quality guidelines for marine and estuarine ecosystems’, Hum. Ecol. Risk Assess. 4, 1019–1039.CrossRefGoogle Scholar
  19. Long, E. R. and Morgan, L. G.: 1990, ‘The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program’, NOAA Technical Memorandum NOS OMA 52, National Oceanic and Atmospheric Administration, Seattle, Washington, U.S.A., p. 175.Google Scholar
  20. Long, E. R.: 2000, ‘Spatial extent of sediment toxicity in U.S. estuaries and marine bays’, Environ. Monit. Assess. 64, 391–407.CrossRefGoogle Scholar
  21. Long, E. R., Field, L. J. and MacDonald, D. D.: 1998, ‘Predicting toxicity in marine sediments with numerical sediment quality guidelines’, Environ. Toxicol. Chem. 17, 714–727.CrossRefGoogle Scholar
  22. Long, E. R., Hameedi, M. J., Sloane, G. M. and Read, L.: 2001, ‘Chemical contamination, toxicity, and benthic community indices in sediments of the lower Miami River and adjoining portions of Biscayne Bay, Florida’, NOAA Technical Memorandum, National Oceanic and Atmospheric Administration, Seattle, Washington, U.S.A.Google Scholar
  23. Long, E. R., Robertson, A., Wolfe, D. A., Hameedi, J. and Sloane, G. M.: 1996b, ‘Estimates of the spatial extent of sediment toxicity in major US estuaries’, Environ. Sci. Technol. 30, 3585–3592.CrossRefGoogle Scholar
  24. Long, E. R., Sloane, G. M., Carr, R. S., Johnson, T., Biedenbach, J., Scott, K. J., Thursby, G. B., Crecelius, E., Peven, C., Windom, H. L., Smith, R. D. and Loganathon, B.: 1997, ‘Magnitude and extent of sediment toxicity in four bays of the Florida Panhandle: Pensacola, Choctawhatchee, St. Andrew and Apalachicola’, NOAA Technical Memorandum NOS ORCA 117, National Oceanic and Atmospheric Administration, Silver Spring, MD, U.S.A., p. 219.Google Scholar
  25. Long, E. R., Sloane, G. M., Carr, R. S., Scott, K. J., Thursby, G. B. and Wade, T. L.: 1996a, ‘Sediment toxicity in Boston Harbor: Magnitude, extent, and relationships with chemical toxicants’, NOAA Technical Memorandum NOS ORCA 96, National Oceanic and Atmospheric Administration, Silver Spring, MD, U.S.A., p. 133.Google Scholar
  26. Long, E. R., MacDonald, D. D., Smith, S. L. and Calder, F. D.: 1995, ‘Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments’, Environ. Manag. 19, 81–97.CrossRefGoogle Scholar
  27. MacDonald, D. D., Carr, R. S., Calder, F. D., Long, E. R. and Ingersoll, C. G.: 1996, ‘Development and evaluation of sediment quality guidelines for Florida coastal waters’, Ecotoxicol 5, 253–278.CrossRefGoogle Scholar
  28. MacDonald, D. D., DiPinto, L. M., Field, J., Ingersoll, C. G., Long, E. R. and Swartz, R. C.: 2000, ‘Development and evaluation of consensus-based sediment effect concentrations for polychorinated biphenyls’, Environ. Toxicol. Chem. 19, 1403–1413.CrossRefGoogle Scholar
  29. McCready S.: 2004, ‘Evaluation of sediment quality guidelines for application in Australia’, PhD Thesis, University of Sydney, NSW, Australia.Google Scholar
  30. McCready, S., Birch, G. F. and Taylor, S. E.: 2003, ‘Extraction of heavy metals in Sydney Harbour sediments using 1 M HCl and 0.05M EDTA and implications for sediment-quality guidelines’, Austr. J. Earth Sci. 50, 249–255.CrossRefGoogle Scholar
  31. McCready, S., Slee, D. J., Birch, G. F. and Taylor, S. E.: 2000, ‘The distribution of polycyclic aromatic hydrocarbons in surficial sediments of Sydney Harbour, Australia’, Mar. Pollut. Bull. 40, 999–1006.CrossRefGoogle Scholar
  32. McCready, S., Spyrakis, G., Greely, C. R., Birch, G. F. and Long, E. R.: 2004, ‘Toxicity of surficial sediments from Sydney Harbour and vicinity, Australia’, Environ. Monit. Assess. 96, 53–83.CrossRefGoogle Scholar
  33. McCready, S., Greely, C. R., Hyne, R. V., Birch, G. F. and Long, E. R.: 2005, ‘Sensitivity of an indigenous amphipod, Corophium colo, to chemical contaminants in laboratory toxicity tests conducted with sediments from Sydney Harbour, Australia, and vicinity, Accepted,’ Environ Toxicol Chem. 24.Google Scholar
  34. Pardos, M., Benninghoff, C., Thomas, R. L. and Khim-Heang, S.: 1999, ‘Confirmation of elemental sulfur toxicity in the Microtox® assay during organic extracts assessment of freshwater sediments’, Environ. Toxicol. Chem. 18, 188–193.CrossRefGoogle Scholar
  35. Salizatto, M., Bertato, V., Pavoni, B., Ghirardini, A. V. and Ghetti, P. F.: 1998, ‘Sensitivity limits and EC50 values of the Vibrio fischeri test for organic micropollutants in natural and spiked extracts from sediments’, Environ. Toxicol. Chem. 17, 655–661.CrossRefGoogle Scholar
  36. Simon, J. and Laginestra, E.: 1997, ‘Bioassay for testing sublethal toxicity in effluents, using gametes of sea urchin Heliocidaris tuberculata’, National Pulp Mills Research Program Technical Report No. 20, Canberra: CSIRO, Australia, p. 36Google Scholar
  37. Sokal, R. R. and Rohlf, F. J.: 1981, Biometry, 2nd ed. W.H. Freeman, San Francisco, CA, U.S.A.Google Scholar
  38. Spyrakis, G.: 2002, ‘Assessment of the predictive ability of sediment quality guidelines using sea urchin toxicity tests’, M.Sc. Thesis, University of Sydney, NSW, Australia.Google Scholar
  39. Swartz, R. C.: 1999, ‘Concensus sediment quality guidelines for polycyclic aromatic hydrocarbon mixtures’, Environ. Toxicol. Chem. 18, 780–787.CrossRefGoogle Scholar
  40. Thompson, B., Anderson, B., Hunt, J., Taberski, K. and Phillips B.: 1999, ‘Relationships between sediment contamination and toxicity in San Francisco Bay’, Mar. Environ. Res. 48, 285–309.CrossRefGoogle Scholar
  41. Thursby, G. B., Heltshe, J. and Scott, K. J.: 1997, ‘Revised approach to toxicity test acceptability criteria using a statistical performance assessment’, Environ. Toxicol. Chem. 16, 1322–1329.CrossRefGoogle Scholar
  42. US EPA: 2000, Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods (SW-846), CD ROM ver 2.0, US EPA and US Dept. of Commerce National Technical Information Service.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. McCready
    • 1
  • G. F. Birch
    • 1
  • E. R. Long
    • 2
  • G. Spyrakis
    • 1
  • C. R. Greely
    • 1
  1. 1.Environmental Geology Group, School of GeosciencesUniversity of SydneySydneyAustralia
  2. 2.ERL EnvironmentalSalemU.S.A.

Personalised recommendations