Environmental Monitoring and Assessment

, Volume 120, Issue 1–3, pp 27–43 | Cite as

Geostatistical Analysis of data on AIR Temperature and Plant Phenology From Baden-Württemberg (GERMANY) as a Basis for Regional Scaled Models of Climate Change

  • Winfried Schröder
  • Gunther Schmidt
  • Judith Hasenclever


The rise of the air temperature is assured to be part of the global climatic change, but there is still a lack of knowledge about its effects at a regional scale. The article tackles the correlation of air temperature with the phenology of selected plants by the example of Baden-Württemberg to provide a spatial valid data base for regional climate change models. To this end, the data on air temperature and plant phenology, gathered from measurement sites without congruent coverage, were correlated after performing geostatistical analysis and estimation. In addition, geostatistics are used to analyze and cartographically depict the spatial structure of the phenology of plants in spring and in summer. The statistical analysis reveals a significant relationship between the rising air temperature and the earlier beginning of phenological phases like blooming or fruit maturation: From 1991 to 1999 spring time, as indicated by plant phenology, has begun up to 15 days earlier than from 1961 to 1990. As shown by geostatistics, this holds true for the whole territory of Baden-Württemberg. The effects of the rise of air temperature should be investigated not only by monitoring biological individuals, as for example plants, but on an ecosystem level as well. In Germany, the environmental monitoring should be supplemented by the study of the effects of the climatic change in ecosystems. Because air temperature and humidity have a great influence on the temporal and spatial distribution of pathogen carriers (vectors) and pathogens, mapping of the environmental determinants of vector and pathogen distribution in space and time should be performed in order to identify hot spots for risk assessment and further detailed epidemiological studies.


air temperature climate change correlation geostatistics mapping of plant phenology meteorological data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahas, R., Aasa, A., Menzel, A., Fedotova, V. G. and Scheifinger, H.: 2002, ‘Changes in European spring phenology’, International Journal of Climatology 22(14), 1727–1738.CrossRefGoogle Scholar
  2. Ashford, R. W.: 2000, ‘The leishmaniases as emerging and reemerging zoonoses’, International Journal of Parasitology 30, 1269–1281.CrossRefGoogle Scholar
  3. Badeck, F.-W., Bondeau, A., Böttcher, K., Doktor, D., Lucht W. W., Schaber, J. and Sitch, S.: 2004, ‘Responses of spring phenology to climate change’, New Phytologist 162(2), 295–309.CrossRefGoogle Scholar
  4. Baumgartner, A.: 1950, ‘Darstellung des Witterungseinflusses auf den Verlauf der Pflanzenentwicklung’, Meteorologische Rundschau 3, 217–221.Google Scholar
  5. Bissolli, P. and Schnadt, K.: 2002, ‘Analyse der raumzeitlichen Veränderungen von ausgewählten phänologischen Phasen in Deutschland’,, Stand 28.12.2002.
  6. Chen, X.: 1994, ‘Untersuchung zur zeit-räumlichen Ähnlichkeit von phänologischen und klimatologischen Parametern in Westdeutschland und zum Einfluss geoökologischer Faktoren’, Berichte des Deutschen Wetterdienstes 189, Offenbach am Main.Google Scholar
  7. Chmielewski, F.-M., Müller A. and Bruns E.: 2004, ‘Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000’, Agricultural and Forest Meteorology 121(1), 69–78.CrossRefGoogle Scholar
  8. Chmielewski, F. M. and Rötzer, T.: 2001, ‘Response of tree phenology to climate change across Europe’, Agricultural and Forest Meteorology 108, 101–112.CrossRefGoogle Scholar
  9. Chmielewski, F. M. and Rötzer, T.: 2002, ‘Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes’, Climatic Research 19, 257–264.Google Scholar
  10. Chuine, I. and Beaubien, E. G.: 2001, ‘Phenology is a major determinant of tree species range’, Ecology Letters 4(5), 500–510.CrossRefGoogle Scholar
  11. Chuine, I., Cambon, G. and Comtois, P.: 2000, ‘Scaling phenology from the local to the regional level: advances from species-specific phenological models’, Global Change Biology 6(8), 943–952.CrossRefGoogle Scholar
  12. Daniel, M., Danielova, V., Kriz, B. B. and Kott, I.: 2004, ‘An attempt to elucidate the increased incidence of tick-borne encephalitis and ist spred to higher altitudes in the Czech Republic’, International Journal of Medical Microbiology 293, (Suppl. 37), 55–62.Google Scholar
  13. Dedet, J. P.: 2001, ‘Geographical distribution of leishmaniases’, Médicine et Maladies Infectieuses 31, 178–183.CrossRefGoogle Scholar
  14. Defila, C. and Clot, B.: 2005, ‘Phytophenological trends in the Swiss Alps, 1951–2002’, Meteorologische Zeitschrift 14(2), 191–196.CrossRefGoogle Scholar
  15. DWD (Deutscher Wetterdienst): 1991, Anleitung für die Phänologischen Beobachter des Deutschen Wetterdienstes. DWD, Offenbach am Main.Google Scholar
  16. Epstein, P. R.: 2000, ‘Krankheiten durch den Treibhauseffekt’, Spektrum der Wissenschaften 12, 40–47.Google Scholar
  17. Freistedt, J.: 2003, Phänologische Daten: Spiegel des Klimawandels? Unpublished Diploma thesis, Institut für Umweltwissenschaften, Vechta.Google Scholar
  18. Hechler, P.: 1990, ‘Zu den Auswirkungen rezenter Klimaänderungen auf ausgewählte phänologische Phasen’, Zeitschrift für Meteorologie 40, 171–178.Google Scholar
  19. Hegelbach, J.: 2001, ‘Wassertemperatur und Blütenphänologie als Anzeiger des früheren Brutbeginns der Wasseramsel (Cinclus cinclus) im schweizerischen Mittelland’, Journal für Ornithologie 142(3), 284–294.CrossRefGoogle Scholar
  20. Hense, A., Glowienka-Hense, R., Müller, M. and Braun, P.: 2002, ‘Spatial modelling of phenological observations to analyse their interannual variations in Germany’, Agricultural and Forest Meteorology 112, 161–178.CrossRefGoogle Scholar
  21. Jensen, P. and Jespersen, J.: 2005, ‘Five decades of tick-man interaction in Denmark – an analysis’, Experimental and Applied Acarology 35, 131–146.CrossRefGoogle Scholar
  22. Keating, J.: 2001, ‘An investigation into the cyclical incidence of dengue fever’, Social Science and Medicine 53, 1587–1597.CrossRefGoogle Scholar
  23. Keil, K. and Schnelle, F.: 1981, ‘Phänologische Beobachtungen und Klimaschwankungen’, Meteorologische Rundschau 34, 180–181.Google Scholar
  24. Kreeb, K. H.: 1954a, ‘Phänologische Untersuchungen auf kleinem Raum’, Meteorologische Rundschau 5/6, 95–100.Google Scholar
  25. Kreeb, K. H.: 1954b, ‘Phänologische Untersuchungen auf kleinem Raum’, Meteorologische Rundschau 7/8, 133–137.Google Scholar
  26. Krige, D. G.: 1951, ‘A statistical approach to some basic mine evaluation problems on the witwatersrand’, Journal of the Chemical, Metallurgical and Mining Society of South Africa 52(6), 119–139.Google Scholar
  27. Küchler, W. and Sommer, W.: 2005, Klimawandel in Sachsen, hrsg. v. Geschäftsbereich des Sächsischen Staatsministeriums für Umwelt und Landwirtschaft, Sächsiches Landesamt für Umwelt und Geologie, Sächsische Landesanstalt für Landwirtschaft, Landestalsperrenverwaltung des Freistaates Sachsen, Dresden.Google Scholar
  28. Lauscher, F. and Schnelle, F.: 1986, ‘Beiträge zur Phänologie Europas V. Lange phänologische Reihen Europas und ihre Beziehungen zur Temperatur’, Berichte des Deutschen Wetterdienstes 169, Offenbach am Main.Google Scholar
  29. Maier, W., Grunewald, J., Habedank, B., Hartelt, K., Kampen, H., Kimmig, P., Naucke, T., Oehme, R., Vollmer, A., Schöler, A. and Schmitt, C.: 2003, ‘Mögliche Auswirkungen von Klimaveränderungen auf die Ausbreitung von primär humanmedizinisch relevanten Krankheitserregern über tierische Vektoren sowie auf die wichtigen Humanparasiten in Deutschland’, Umweltbundesamt, Forschungsbericht 200 61 218/11, Berlin.Google Scholar
  30. Markert, B., Breure, A. M. and Zechmeister, H.G. (eds.): 2003, Bioindicators and Biomonitors. Principles, Concepts and Applications. Elsevier, Amsterdam, New York, Tokyo.Google Scholar
  31. Markert, B., Wuenschmann, S., Fränzle, S., Breulmann, G., Djingova, R., Herpin, U., Lieth, H., Schröder, W., Siewers, U., Steinnes, E., Wappelhorst, O., Weckert, V., Wolterbeek, B. and Zechmeister, H.: 2005, ‘On the road from environmental biomonitoring to human health aspects of atmospheric deposition of heavy metals by epiphytic plants. Present status and future needs’, The International Journal of Environment and Pollution, Special Edition (accepted 07 / 2005).Google Scholar
  32. Matheron, G.: 1965, Les Variables Régionalisées et Leur Estimation. Masson, Paris.Google Scholar
  33. Matheron, G.: 1971, The Theory of Regionalized Variables and Its Application. Fontainebleau.Google Scholar
  34. Menzel, A.: 1997, ‘Phänologie von Waldbäumen unter sich ändernden Klimabedingungen’, Forstliche Forschungsberichte München 164, München.Google Scholar
  35. Menzel, A., Sparks, T. H., Estrella, N. and Eckhardt, S.: 2005, ‘SSW to NNE’– North Atlantic Oscillation affects the progress of seasons across Europe’, Global Change Biology 11(6), 909–918.CrossRefGoogle Scholar
  36. Meynen, E., Schmithüsen, J., Gellert, J., Neef, E., Müllerminy, H. and Schultze, J. H.: 1953, 1962, Handbuch der naturräumlichen Gliederung Deutschlands. 2 vols., Bad Godesberg.Google Scholar
  37. Molyneux, D. H.: 1998, ‘Vector-borne parasitic diseases – an overview of recent changes’, International Journal of Parasitology 28, 927–934.CrossRefGoogle Scholar
  38. Niemand, C., Köstner, B., Prasse, H., Grünwald, T. and Bernhofer, C.: 2005, ‘Relating tree phenology with annual carbon fluxes at Tharandt forest’, Meteorologische Zeitschrift 14(2), 197–202.CrossRefGoogle Scholar
  39. Olea, R. A.: 1999, Geostatistics for Engineers and Earth Scientists. Kluwer Academic Publishers, Boston, Dordrecht, London.Google Scholar
  40. Rosenkranz, F.: 1951, Grundzüge der Phänologie. Mit besonderer Berücksichtigung von Österreich. Wien.Google Scholar
  41. Rötzer, T. and Chmielewski, F. M.: 2001, ‘Phenological maps of Europe’, Climate Research 18, 249–257.Google Scholar
  42. Scheifinger, H., Menzel, A., Koch, E., Peter, C. and Ahas, R.: 2002, ‘Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in Central Europe’, International Journal of Climatology 22(14), 1739CrossRefGoogle Scholar
  43. Schnelle, F.: 1955, Pflanzen-Phänologie. Leipzig.Google Scholar
  44. Schnelle, F.: 1981, ‘Beiträge zur Phänologie Europas IV. Lange phänologische Beobachtungsreihen in West-, Mittel- und Osteuropa’, Berichte des Deutschen Wetterdienstes 158, Offenbach am Main.Google Scholar
  45. Schnelle, F. and Volkert, E.: 1957, ‘Vorschläge zur Einrichtung Internationaler Phänologischer Gärten als Stationen eines Grundnetzes für internationale phänologische Beobachtungen’, Meteorologische Rundschau 10, 130–133.Google Scholar
  46. Schröder, W., Broecker, F., Schmidt, G. and Pesch, R.: 2002, ’Pilotvorhaben zur integrierenden ökologischen Umweltbeobachtung. Modellentwicklung für eine medienübergreifende Interpretation von Messdaten’, FuE-Vorhaben-Abschlussbericht, im Auftrag des Landesamtes für Umweltschutz Baden-Württemberg, Karlsruhe.Google Scholar
  47. Seyfert, F.: 1960, Phänologie. Lutherstadt Wittenberg.Google Scholar
  48. Stöckli, R. and Vidale, P. L.: 2004, ‘European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset’, International Journal of Remote Sensing 25(17), 3303–3330.CrossRefGoogle Scholar
  49. Süss, J., Schrader, C., Falk, U. and Wohanka, N.: 2004, ‘Tick-borne encephalitis (TBE) in Germany. Epidemiological Data, development of risk areas and virue prevalence in field-collected ticks and in ticks removed from humans’, International Journal of Medical Microbiology 293, (Suppl. 37), 69–79.Google Scholar
  50. Theurillat, J.-P. and Guisan, A.: 2001, ‘Potential impact of climate change on vegetation in the European Alps: A review’, Climatic Change 50(1–2), 77–109.CrossRefGoogle Scholar
  51. van Vliet, A. J. H. and Schwartz, M. D.: 2002, ‘Editorial: Phenology and climate: The timing of life cycle events as indicators of climatic variability and change’, International Journal of Climatology 22(14):1713–1714.CrossRefGoogle Scholar
  52. Webster, R. and Oliver, M. A.: 2001, Geostatistics for Environmental Scientists. John Wiley and Sons. Ltd., Chichester, New York, Weinheim, Brisbane, Singapore, Toronto.Google Scholar
  53. Zell, R.: 2004, ‘Global climate change and the emergence/re-emergence of infectious diseases’, International Journal of Medical Microbiology 293(Suppl. 37), 16–26.Google Scholar
  54. Zeman, P. and Benes, C.: 2004, ‘A tick-borne encephalitis ceiling in Central Europe has moved upwards during the last 30 years: Possible impact of global warming?’, International Journal of Medical Microbiology 293(Suppl. 37), 48–54.Google Scholar

Copyright information

© Springer Science + Business Media, B.V. 2006

Authors and Affiliations

  • Winfried Schröder
    • 1
  • Gunther Schmidt
    • 1
  • Judith Hasenclever
    • 1
  1. 1.Institut für UmweltwissenschaftenVechtaGermany

Personalised recommendations