Advertisement

Environmental Monitoring and Assessment

, Volume 119, Issue 1–3, pp 15–30 | Cite as

Evaluation Of Ambient Air Pollution Impact On Carrot Plants At A Sub Urban Site Using Open Top Chambers

  • S. Tiwari
  • M. Agrawal
  • F. M. Marshall
Article

Abstract

The present experiment was done to evaluate the impact of ambient air pollution on carrot (Dacus carotavar. Pusa Kesar) plants using open top chambers (OTCs) ventilated with ambient (NFCs) or charcoal filtered air (FCs) at a suburban site of Varanasi, India. Various morphological, physiological and biochemical characteristics of the plants were studied at different growth stages. Air monitoring data clearly showed high concentrations of SO2, NO2and O3in the ambient air of study site. SO2and NO2concentrations were higher during early growth stages of carrot, whereas O3concentration was highest during later growth stages. Filtration of air has caused significant reductions in all the three pollutant concentrations in FCs as compared to NFCs.Plants growing in FCs showed significantly higher photosynthetic rate, stomatal conductance, water use efficiency and variable fluorescence as compared to plants growing in NFCs. Protein content also showed a similar pattern, however, lipid peroxidation, ascorbic acid content and peroxidase activity were higher in plants growing in NFCs as compared to FCs. Shoot length, number of leaves per plant, leaf area and root and shoot weight increased significantly upon filtration of ambient air. Total nitrogen decreased significantly in root, but increased significantly in shoot of plants grown in NFCs. Total P, Mg, Ca and K contents decreased significantly in plants grown in NFCs as compared to FCs. The individual pollutant concentrations were below threshold for plant injury, but the combined effect of all the three seems to act synergistically in causing greater adverse impact on dry weight and physiology of carrot plants. The study clearly indicates that air pollutants are high enough in the ambient air to cause significant unfavorable impact on carrot plants. The work further supports the usefulness of OTCs for assessing air pollution damage under field conditions in developing countries.

Keywords

ambient air carrot plants impact open top chambers suburban site 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R. M., Glter, J. D. and McCarl, B. A.: 1988, ‘The NCLAN economic assessment: Approach and findings and implications’, in: W. W. Heck, O. C. Taylor and D. T. Tingey (eds), Assessment of crop loss from air pollutants. Elsevier, London, pp. 473–504.Google Scholar
  2. Agrawal, M. and Agrawal, S. B.: 1990, ‘Effects of ozone exposure on enzymes and metabolites of nitrogen metabolism’, Sci. Hort. 43, 169–177.CrossRefGoogle Scholar
  3. Agrawal, M., Singh, B., Rajput, M., Marshall, F. and Bell, J. N. B.: 2003, ‘Effects of air pollution on peri urban agriculture: A case study’, Environ Pollut. 126, 323–329.CrossRefGoogle Scholar
  4. Allen, S. E., Grimshaw, H. M., Parkinson, J. A. and Quarmby, C.: 1974, ‘Chemical Analysis of Ecological Materials’, Blackwell Scientific Publications, Osney Mead, Oxford, UK.Google Scholar
  5. Atkinson, C. J., Robe, S. V. and Winner, W. E.: 1988, ‘The relationship between changes in photosynthesis and growth for radish plants fumigated with SO2 and NO2’, New Phytol 110, 173–184.CrossRefGoogle Scholar
  6. Bell, J. N. B. and Ashmore, M. R.: 1986, ‘Design and construction of open top chambers and methods of filtration (equipments and cost)’, in: Proceedings of II European Open Top Chambers Workshop, September 1986, Freiburg, CEC Brussels.Google Scholar
  7. Black, V. J., Ormond, D. P. and Unsworth, M. H.: 1982, ‘Effects of low concentration of O3 singly and in combination with SO2 on net photosynthesis rates of Vicia faba L’, J. Exp. Bot. 33, 1302–1311.Google Scholar
  8. Bonte, J., Cantuel, J., Galanp, S. and Longuet, P.: 1988, ‘Effects of ambient O3 on yield and physiological parameters of bean (Phaseolus vulgaris, cultivar Lit)’ in: J. Bonte and P. Mathy (eds), The European Community Project on Open Top Chambers. Results on Agricultural Crops for 1987–1988, Air Pollution Report Series no. 19, Commission of the European Communities, Brussels, Belgium, pp. 26–42.Google Scholar
  9. Bray, H. G. and Thorpe, W. Y.: 1954, ‘Analysis of phenolic compounds of interests in metabolism’, in: D. Click (ed), Methods of Biochemical Analysis, Interscience Publication Inc. New York, 1, 27–52.Google Scholar
  10. Britton, C. and Mehley, A. C.: 1955, in: S. P. Colowick and N. O. Kalpan (eds), Methods in enzymology, Academic Press Inc. New York, 2, 764.Google Scholar
  11. Bull, J. N. and Mansfield, T. A.: 1974, ‘Photosynthesis in leaves exposed to SO2 and NO2’, Nature 250, 443–444.CrossRefGoogle Scholar
  12. Calatayud, A., Ramirez, J. W., Iglesias, D. J. and Barreno, E.: 2002, ‘Effect of O3 on photosynthetic CO2 exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves’, Physiol Plant 116, 308–316.CrossRefGoogle Scholar
  13. Castillo, F. J., Penel, C. L. and Greppin, H.: 1984, ‘Peroxidase release induced by O3 in Sedum album leaves: Involvement of Ca++’, Plant Physiol 74, 846–851.Google Scholar
  14. Darrall, N. M.: 1989, ‘The effect of air pollutants on physiological processes in plants’, Plant Cell Environ. 12, 1–30.CrossRefGoogle Scholar
  15. Deepak, S. S. and Agrawal, M.: 2001, ‘Influence of elevated CO2 on sensitivity of two soybean cultivars to SO2’, Environ. Exp. Bot. 46, 81–91.CrossRefGoogle Scholar
  16. Dekok, L. J.: 1990, ‘Sulphur metabolism in plants exposed to atmospheric sulphur’, in: H. Rennerberg, C. Brunold, L. J. Dekok and I. Stulen (eds), Sulphur Nutrition and Sulphur Assimilation in Higher Plants: Fundamental, Environmental and Agricultural Aspects, SBS Academic Publishing, The Hauge, The Netherlands, pp. 125–138.Google Scholar
  17. Dhindsa, R. S., Plumb- Dhindhsa, P. and Thorpe T. A.: 1982, ‘Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase’, J. Exp. Bot. 32, 93–101.Google Scholar
  18. Duxbury, A. C. and Yentsch, C. S.: 1956, ‘Plankton pigment monographs’, J. Marine. Res. 15, 91–101.Google Scholar
  19. Hassan, I. A., Ashmore, M. R. and Bell J. N. B.: 1995, ‘Effect of ozone on radish and turnip under Egyptian field conditions’, Environ. Pollut. 89, 107–114.CrossRefGoogle Scholar
  20. Heath, R. L. and Packer, L.: 1968, ‘Photoperoxidation in isoloted chloroplasts’, Arch. Biochem. Biophys. 125, 189–198.CrossRefGoogle Scholar
  21. Heggestad, H. E., Heagle, A. S., Bennett. J. H. and Koch E. J.: 1980, ‘The effects of photochemical oxidants on the yield of snap beans’, Atmos. Environ. 14, 317–326.CrossRefGoogle Scholar
  22. Howell, R,K.: 1974, ‘Phenols, ozone and their involvement in the physiology of plant injury’, in: M. Dugger (ed), Air Pollution Related to Plant Growth, A.C.S. Symposium Series 3. Washington DC, pp. 94–105.Google Scholar
  23. Hunt, R.: 1982, Growth curves. Edward Arnold (Publishers) Ltd. London.Google Scholar
  24. Huve, K., Dittrich, A., Kindermann, G. and Herber, U.: 1995, ‘Detoxification of SO2 in conifers differing in SO2 tolerance. A comparision of Picea Abies, Picea Pungens and Pinus Sylvestris’, Planta 195, 578–585.Google Scholar
  25. Jager, H. J., Unsworth, M., De Temmerman, L. and Mathy, P.: 1994, ‘Effects of air pollution on agricultural crops in Europe, Air Pollution Report 46. CEC, Brussels.Google Scholar
  26. Keller, T. and Jager, H. J.: 1980, ‘Der einflux bodenburtiger sulfationen auf den schwefelgehalt SO2- begaster assimilations rgane von waldbaumarten’, Angew Botany 54, 77–89.Google Scholar
  27. Keller, T. and Schwager, H.: 1977, ‘Air pollution and ascorbic acid’, European J. Pathol. 7, 338–350.Google Scholar
  28. Kelly, J. M., Taylor, G. E., Edwards, N. T., Adams, M. B., Edwards, G. S. and Friend, A. L.: 1993, ‘Growth physiology and nutrition of loblolly pine seedlings stressed by O3 and acid precipitation: A summary of the ropis-south project’, Water Air and Soil Pollut. 69, 363–391.CrossRefGoogle Scholar
  29. Krause, G. H., Virgo, A. and Winter, K.: 1995, ‘High susceptibility to photoinhibition of young leaves of tropical forest trees’, Planta 197, 583–591.CrossRefGoogle Scholar
  30. Krupa, S. V., Grunhage, L., Jager, H. J., Nosel, M., Legge, A. H. and Hanewald, K.: 1995, ‘Ambient ozone and adverse crop response: A unified view of cause and effects’, Environmental Pollution 87, 119–126.CrossRefGoogle Scholar
  31. Lee, E. H., Jersey, J. H., Gifford, C. and Bennet, J.: 1984, ‘Differential O3 tolerance in soybean and snapbeans: Analysis of ascorbic acid in O3 susceptible and O3 resistant cultivars by high performance liquid chromatography’, Environ. Exp. Bot. 24, 331–334.CrossRefGoogle Scholar
  32. Lowry, O. H., Farr, A. L., Rosenbrough and Randall, R. J.: 1951, ‘Protein measurement with folin reagent’, J. Biological. Chem. 193, 265–275.Google Scholar
  33. Machlachlan, S. and Zalik, S.: 1963, ‘Plastid structure, chlorophyll concentration and free amino acid composition of a chlorophyll mutant of barley’, Can. J. Bot. 41, 1053–1062.CrossRefGoogle Scholar
  34. McLeod, A. R., Roberts, T. M., Alexander, K. and Cribb, D. M.: 1988, ‘Effects of open air fumigation with sulphur dioxide on the growth and yield of winter barley’, New Phytol. 109, 67–78.CrossRefGoogle Scholar
  35. Merrymann, E. L., Spicer, C. W. and Levy, A.: 1973, ‘Evaluation of arsenate modified Jacobs Hochheiser procedure’, Environ. Sci. Tech. 7, 1056–1059.CrossRefGoogle Scholar
  36. Pandey, J. and Agrawal, M.: 1994, ‘Evaluation of air pollution in seasonally dry topical urban environment using three woody perennials’, New Phytol. 126, 53–61.CrossRefGoogle Scholar
  37. Paulden- Muller, S., Saxe, H. and Leverenz, J. W.: 1999, ‘Responses to O3 in 12 provenances of European beech (Fagus sylvestica): genotypic variations and chamber effects on photosynthesis and dry matter partitioning’, New Phytol. 144, 261–273.CrossRefGoogle Scholar
  38. Peters, J. L., Castillo, F. J. and Heath, R. L.: 1988, ‘Alteration of extracellular enzymes in Pinto bean leaves upon exposure to air pollutants, O3 and SO2’, Plant Physiol. 89, 159–164.Google Scholar
  39. Pleijel, H., Skarby, L., Wallin, G. and Sellden, G.: 1991, ‘Yield and grain quality of spring wheat (T. aestivum Drabant) exposed to different concentrations of ozone in open top chambers’, Environ. Pollut. 69, 151–168.CrossRefGoogle Scholar
  40. Rajput, M. and Agrawal, M.: 2004, ‘Physiological and yield responses of pea plants to ambient air pollution’, Indian J. Plant. Physiol. 9, 9–14.Google Scholar
  41. Ranieri, A., D’llrso, G., Nali, C., Lorenzini, G. and Soldatini, G. F.: 1996, ‘Ozone stimulates apoplastic antioxidant systems in pumpkin leaves’, Physiol. Plant 97, 381–387.CrossRefGoogle Scholar
  42. Reiling, K. and Davison, A. W.: 1992, ‘Effects of short O3 exposure given at different stages in the development of Plantago major L’, New phytol. 121, 643–647.CrossRefGoogle Scholar
  43. Rossum, J. R. and Vallaruz, P. 1961, ‘Suggested methods of turbiditimetric determination of sulphate in water’. J. Amer. Water. Work. Assoc. 53, 873.Google Scholar
  44. Sandhu, R. and Gupta, G.: 1989, ‘Effect of nitrogen dioxide on growth and yield of black turtle bean (Phaseolus vulgaris L.) cv. Domino’, Environ. Pollut. 59, 337–344.CrossRefGoogle Scholar
  45. Saxe, H.: 1991, ‘Photosynthesis and stomatal responses to polluted air, and the use of physiological and biochemical responses for early detection and diagnostic tools’, in: J. A. Callow (ed), Advances in botanical research. Academic Press, London, UK, 18, 1–128.Google Scholar
  46. Shimazaki, K., Sakai, T., Kondo, N. and Sugahara, K.: 1980, ‘Active oxygen participation in chlorophyll destruction and lipid peroxidation in SO2-fumigated leaves of spinach’, Plant cell Physiol 21, 1193–1204.Google Scholar
  47. Spence, R. D., Rykeil, E. J. and Sharpe, P. J. H.: 1990, ‘Ozone alters carbon allocation in loblolly pine: assessment with carbon-11 labelling’, Environ. Pollut. 64, 93–106.CrossRefGoogle Scholar
  48. TERG: 1988, The Effects of Acid Deposition on the Terrestrial Environment in the United Kingdom. UK Terrestrial Effects Review Group, 1st report. HMSO, London.Google Scholar
  49. Varshney, R. K. and Varshney, C. K.: 1984, ‘Effects of SO2 on ascorbic acid in crop plants’, Environ. Pollut. 35, 285–290.CrossRefGoogle Scholar
  50. Wahid, A., Maggs, R., Shamsi, S. R. A., Bell, J. N. B and Ashmore, M. R.: 1995(a), ‘Air pollution and its impacts on wheat yield in Pakistan Punjab’, Environ. Pollut. 88, 147–154.CrossRefGoogle Scholar
  51. Wahid, A., Maggs, R., Shamsi, S. R. A., Bell, J. N. B. and Ashmore, M. R.: 1995(b), ‘Effect of air pollution on rice yield in Pakistan Punjab’, Environ. Pollut. 90, 323–329.CrossRefGoogle Scholar
  52. Wellburn, A. R., Higginson, C., Robinson, D. and Walmsley, C.: 1981, ‘Biochemical explanations of more than additive levels of SO2 and NO2 upon plants’, New Phytol. 88, 223–237.CrossRefGoogle Scholar
  53. West, P. W. and Gaeke, G. C.: 1956, ‘Fixation of SO2 as sulphomercurate (II) and subsequent colorimetric estimation’, Anal. Chem. 28, 1816–1819.CrossRefGoogle Scholar
  54. Williams, J. D. H., Syers, J. K., Walker, T. W. and Rex, R. W.: 1970, ‘A comparison of methods for the determination of soil organic phosphorous’, Soil Science 110, 13–18.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • S. Tiwari
    • 1
  • M. Agrawal
    • 1
  • F. M. Marshall
    • 2
  1. 1.Department of BotanyBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Environment Science and TechnologyImperial CollegeLondonUK

Personalised recommendations