Skip to main content
Log in

An efficient novel online shopping mechanism based on quantum communication

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

We propose a controlled quantum secure direct communication protocol which can be used for online shopping. The online shopping mall is able to control the shopping process, so the customer’s shopping information can be more secure. In this paper, single photons are used to carry customer’s information, so the cost of our protocol is less than others using entangled qubits. If any eavesdropper tries to steal the shopping information, the lawful participants will perceive it and abort their transaction. This protocol can be used to provide advanced applications and services for intelligent ubiquitous environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Acin, A., Gisin, N., & Masanes, L. (2006). From Bells theorem to secure quantum key distribution. Physical Review Letters, 97, 120405.

    Article  Google Scholar 

  2. Antoniou, G., & Batten, L. (2011). E-commerce: Protecting purchaser privacy to enforce trust. Electronic Commerce Research, 11, 421–456.

    Article  Google Scholar 

  3. Beige, A., Englert, B. G., Kurtsiefer, C., & Weinfurter, H. (2002). Secure communication with a publicly known key. Acta Physica Polonica A, 101, 357–368.

    Google Scholar 

  4. Bennett, C. H., & Brassard, G. (1984). Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (p. 175).

  5. Bennett, C. H., Brassard, G., & Mermin, N. D. (1992). Quantum cryptography without Bell’s theorem. Physical Review Letters, 68, 557–559.

    Article  Google Scholar 

  6. Bostrm, K., & Felbinger, T. (2002). Deterministic secure direct communication using entanglement. Physical Review Letters, 89, 187902.

    Article  Google Scholar 

  7. BruB, D. (1998). Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters, 81, 3018.

    Article  Google Scholar 

  8. Cai, Q. Y., & Li, B. W. (2004). Improving the capacity of the Bostrm–Felbinger protocol. Physical Review A, 69, 054301.

    Article  Google Scholar 

  9. Cai, Q. Y., & Li, B. W. (2004). Deterministic secure communication without using entanglement. Chinese Physics Letters, 21, 601.

    Article  Google Scholar 

  10. Chen, M. Y., & Teng, C. I. (2013). A comprehensive model of the effects of online store image on purchase intention in an e-commerce environment. Electronic Commerce Research, 13, 1–23.

    Article  Google Scholar 

  11. Deng, F., & Long, G. (2004). Secure direct communication with a quantum one-time pad. Physical Review A, 69, 052319.

    Article  Google Scholar 

  12. Deng, F., Long, G., & Liu, X. (2003). Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Physical Review A, 68, 042317.

    Article  Google Scholar 

  13. Deng, F. G., Li, C. Y., Zhou, P., & Zhou, H. Y. (2006). Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Physical Letters A, 359, 359–365.

    Article  Google Scholar 

  14. Ekert, A. K. (1991). Quantum cryptography based on Bell’s theorem. Physical Review Letters, 67, 661–663.

    Article  Google Scholar 

  15. Gao, T., Yan, F. L., & Wang, Z. X. (2005). Controlled quantum teleportation and secure direct communication. Chinese Physics, 14(5), 893.

    Article  Google Scholar 

  16. Guo, G. P., & Guo, G. C. (2003). Quantum secret sharing without entanglement. Physics Letters A, 310, 247.

    Article  Google Scholar 

  17. Hillery, M., Buek, V., & Berthiaume, A. (1999). Quantum secret sharing. Physical Review A, 59, 1892.

    Article  Google Scholar 

  18. Karlsson, A., Koashi, M., & Lmoto, N. (1999). Quantum entanglement for secret sharing and secret splitting. Physical Review A, 59, 162.

    Article  Google Scholar 

  19. Li, X. H., Zhou, P., Liang, Y. J., Li, C. Y., Zhou, H. Y., & Deng, F. G. (2006). Quantum secure direct communication network with two-step protocol. Chinese Physics Letters, 23, 1080–1083.

    Article  Google Scholar 

  20. Long, G. L., & Liu, X. S. (2002). Theoretically efficient high-capacity quantum-key-distribution scheme. Physical Review A, 65, 032302.

    Article  Google Scholar 

  21. Lucamarini, M., & Mancini, S. (2005). Secure deterministic communication without entanglement. Physical Review Letters, 94, 140501.

    Article  Google Scholar 

  22. Morid, M. A., & Shajari, M. (2012). An enhanced e-commerce trust model for community based centralized systems. Electronic Commerce Research, 12, 409–427.

    Article  Google Scholar 

  23. Nielsen, M. A., & Chuang, I. L. (2000). Quantum computation and quantum information. Cambridge: Cambridge University Press.

    Google Scholar 

  24. Ramanathan, R. (2010). E-commerce success criteria: Determining which criteria count most. Electronic Commerce Research, 10, 191–208.

    Article  Google Scholar 

  25. Shimizu, K., & Imoto, N. (1999). Communication channels secured from eavesdropping via transmission of photonic Bell states. Physical Review A, 60, 157–166.

    Article  Google Scholar 

  26. Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. In 35th Annual Symposium on Foundations of Computer Science (pp. 124–134).

  27. Smith, R., & Shao, J. (2007). Privacy and e-commerce: A consumer-centric perspective. Electronic Commerce Research, 7, 89–116.

    Article  Google Scholar 

  28. Vernam, G. S. (1926). Cipher printing telegraph systems for secret wire and radio telegraphic communications. Journal of the American Institute of Electrical Engineers, 45, 295–301.

    Article  Google Scholar 

  29. Wang, C., Deng, F. G., Li, Y. S., Liu, X. S., & Long, G. L. (2005). Quantum secure direct communication with high-dimension quantum superdense coding. Physical Review A, 71, 044305.

    Article  Google Scholar 

  30. Wang, C., Deng, F. G., & Long, G. L. (2005). Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Optics Communications, 253, 15–20.

    Article  Google Scholar 

  31. Wang, J., Zhang, Q., & Tang, C. J. (2006). Multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Optics Communications, 266, 732.

    Article  Google Scholar 

  32. Xiao, L., Long, G. L., Deng, F. G., & Pan, J. W. (2004). Efficient multiparty quantum-secret-sharing schemes. Physical Review A, 69, 052307.

    Article  Google Scholar 

  33. Xue, P., Li, C. F., & Guo, G. C. (2002). Conditional efficient multiuser quantum cryptography network. Physical Review A, 65, 022317.

    Article  Google Scholar 

  34. Zhang, Z. J. (2005). Multiparty quantum secret sharing of secure direct communication. Physics Letters A, 342, 60–66.

    Article  Google Scholar 

  35. Zhang, Z. J., Li, Y., & Man, Z. X. (2005). Multiparty quantum secret sharing. Physical Review A, 71, 044301.

    Article  Google Scholar 

  36. Zhou, P., Li, X. H., Liang, Y. J., Deng, F. G., & Zhou, H. Y. (2007). Multiparty quantum secret sharing with pure entangled states and decoy photons. Physica A: Statistical Mechanics and its Applications, 381, 164–169.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Hsin Chou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, YH., Lin, FJ. & Zeng, GJ. An efficient novel online shopping mechanism based on quantum communication. Electron Commer Res 14, 349–367 (2014). https://doi.org/10.1007/s10660-014-9143-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-014-9143-6

Keywords

Navigation