Electronic Commerce Research

, Volume 14, Issue 3, pp 349–367 | Cite as

An efficient novel online shopping mechanism based on quantum communication



We propose a controlled quantum secure direct communication protocol which can be used for online shopping. The online shopping mall is able to control the shopping process, so the customer’s shopping information can be more secure. In this paper, single photons are used to carry customer’s information, so the cost of our protocol is less than others using entangled qubits. If any eavesdropper tries to steal the shopping information, the lawful participants will perceive it and abort their transaction. This protocol can be used to provide advanced applications and services for intelligent ubiquitous environments.


Online shopping E-Commerce Quantum communication   Secure communication Digital wallet 


  1. 1.
    Acin, A., Gisin, N., & Masanes, L. (2006). From Bells theorem to secure quantum key distribution. Physical Review Letters, 97, 120405.CrossRefGoogle Scholar
  2. 2.
    Antoniou, G., & Batten, L. (2011). E-commerce: Protecting purchaser privacy to enforce trust. Electronic Commerce Research, 11, 421–456.CrossRefGoogle Scholar
  3. 3.
    Beige, A., Englert, B. G., Kurtsiefer, C., & Weinfurter, H. (2002). Secure communication with a publicly known key. Acta Physica Polonica A, 101, 357–368.Google Scholar
  4. 4.
    Bennett, C. H., & Brassard, G. (1984). Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (p. 175).Google Scholar
  5. 5.
    Bennett, C. H., Brassard, G., & Mermin, N. D. (1992). Quantum cryptography without Bell’s theorem. Physical Review Letters, 68, 557–559.CrossRefGoogle Scholar
  6. 6.
    Bostrm, K., & Felbinger, T. (2002). Deterministic secure direct communication using entanglement. Physical Review Letters, 89, 187902.CrossRefGoogle Scholar
  7. 7.
    BruB, D. (1998). Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters, 81, 3018.CrossRefGoogle Scholar
  8. 8.
    Cai, Q. Y., & Li, B. W. (2004). Improving the capacity of the Bostrm–Felbinger protocol. Physical Review A, 69, 054301.CrossRefGoogle Scholar
  9. 9.
    Cai, Q. Y., & Li, B. W. (2004). Deterministic secure communication without using entanglement. Chinese Physics Letters, 21, 601.CrossRefGoogle Scholar
  10. 10.
    Chen, M. Y., & Teng, C. I. (2013). A comprehensive model of the effects of online store image on purchase intention in an e-commerce environment. Electronic Commerce Research, 13, 1–23.CrossRefGoogle Scholar
  11. 11.
    Deng, F., & Long, G. (2004). Secure direct communication with a quantum one-time pad. Physical Review A, 69, 052319.CrossRefGoogle Scholar
  12. 12.
    Deng, F., Long, G., & Liu, X. (2003). Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Physical Review A, 68, 042317.CrossRefGoogle Scholar
  13. 13.
    Deng, F. G., Li, C. Y., Zhou, P., & Zhou, H. Y. (2006). Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Physical Letters A, 359, 359–365.CrossRefGoogle Scholar
  14. 14.
    Ekert, A. K. (1991). Quantum cryptography based on Bell’s theorem. Physical Review Letters, 67, 661–663.CrossRefGoogle Scholar
  15. 15.
    Gao, T., Yan, F. L., & Wang, Z. X. (2005). Controlled quantum teleportation and secure direct communication. Chinese Physics, 14(5), 893.CrossRefGoogle Scholar
  16. 16.
    Guo, G. P., & Guo, G. C. (2003). Quantum secret sharing without entanglement. Physics Letters A, 310, 247.CrossRefGoogle Scholar
  17. 17.
    Hillery, M., Buek, V., & Berthiaume, A. (1999). Quantum secret sharing. Physical Review A, 59, 1892.CrossRefGoogle Scholar
  18. 18.
    Karlsson, A., Koashi, M., & Lmoto, N. (1999). Quantum entanglement for secret sharing and secret splitting. Physical Review A, 59, 162.CrossRefGoogle Scholar
  19. 19.
    Li, X. H., Zhou, P., Liang, Y. J., Li, C. Y., Zhou, H. Y., & Deng, F. G. (2006). Quantum secure direct communication network with two-step protocol. Chinese Physics Letters, 23, 1080–1083.CrossRefGoogle Scholar
  20. 20.
    Long, G. L., & Liu, X. S. (2002). Theoretically efficient high-capacity quantum-key-distribution scheme. Physical Review A, 65, 032302.CrossRefGoogle Scholar
  21. 21.
    Lucamarini, M., & Mancini, S. (2005). Secure deterministic communication without entanglement. Physical Review Letters, 94, 140501.CrossRefGoogle Scholar
  22. 22.
    Morid, M. A., & Shajari, M. (2012). An enhanced e-commerce trust model for community based centralized systems. Electronic Commerce Research, 12, 409–427.CrossRefGoogle Scholar
  23. 23.
    Nielsen, M. A., & Chuang, I. L. (2000). Quantum computation and quantum information. Cambridge: Cambridge University Press.Google Scholar
  24. 24.
    Ramanathan, R. (2010). E-commerce success criteria: Determining which criteria count most. Electronic Commerce Research, 10, 191–208.CrossRefGoogle Scholar
  25. 25.
    Shimizu, K., & Imoto, N. (1999). Communication channels secured from eavesdropping via transmission of photonic Bell states. Physical Review A, 60, 157–166.CrossRefGoogle Scholar
  26. 26.
    Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. In 35th Annual Symposium on Foundations of Computer Science (pp. 124–134).Google Scholar
  27. 27.
    Smith, R., & Shao, J. (2007). Privacy and e-commerce: A consumer-centric perspective. Electronic Commerce Research, 7, 89–116.CrossRefGoogle Scholar
  28. 28.
    Vernam, G. S. (1926). Cipher printing telegraph systems for secret wire and radio telegraphic communications. Journal of the American Institute of Electrical Engineers, 45, 295–301.CrossRefGoogle Scholar
  29. 29.
    Wang, C., Deng, F. G., Li, Y. S., Liu, X. S., & Long, G. L. (2005). Quantum secure direct communication with high-dimension quantum superdense coding. Physical Review A, 71, 044305.CrossRefGoogle Scholar
  30. 30.
    Wang, C., Deng, F. G., & Long, G. L. (2005). Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Optics Communications, 253, 15–20.CrossRefGoogle Scholar
  31. 31.
    Wang, J., Zhang, Q., & Tang, C. J. (2006). Multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Optics Communications, 266, 732.CrossRefGoogle Scholar
  32. 32.
    Xiao, L., Long, G. L., Deng, F. G., & Pan, J. W. (2004). Efficient multiparty quantum-secret-sharing schemes. Physical Review A, 69, 052307.CrossRefGoogle Scholar
  33. 33.
    Xue, P., Li, C. F., & Guo, G. C. (2002). Conditional efficient multiuser quantum cryptography network. Physical Review A, 65, 022317.CrossRefGoogle Scholar
  34. 34.
    Zhang, Z. J. (2005). Multiparty quantum secret sharing of secure direct communication. Physics Letters A, 342, 60–66.CrossRefGoogle Scholar
  35. 35.
    Zhang, Z. J., Li, Y., & Man, Z. X. (2005). Multiparty quantum secret sharing. Physical Review A, 71, 044301.CrossRefGoogle Scholar
  36. 36.
    Zhou, P., Li, X. H., Liang, Y. J., Deng, F. G., & Zhou, H. Y. (2007). Multiparty quantum secret sharing with pure entangled states and decoy photons. Physica A: Statistical Mechanics and its Applications, 381, 164–169.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Computer Science and Information EngineeringNational Chi-Nan UniversityPuliTaiwan, ROC

Personalised recommendations