Electronic Commerce Research

, Volume 11, Issue 1, pp 75–89 | Cite as

Innovative Internet video consuming based on media analysis techniques



Internet video is becoming more and more popular in consuming field. The increasing of video data volumes requires some innovative means to enrich the video consuming experiences. Multimedia analysis is the key means, which can provide conveniences to both Internet video providers and consumers. This paper reviews the progress of media analysis techniques, investigates typical innovative Internet video services based on media analysis, introduces some innovative user experiences based on media analysis, and presents some open issues and potential research topics in media analysis and the related applications in Internet video services. We hope the paper provides valuable information to the researchers, engineers or decision-makers working in the fields of Internet video and media analysis.


Intelligent service Internet video Media analysis Ubiquitous service 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Internet video: http://en.wikipedia.org/wiki/Internet_video. Accessed by September 10, 2009.
  2. 2.
    Ardissono, L., Kobsa, A., & Maybury, M. T. (Eds.) (2004). Book series: human-computer interaction series : Vol. 6. Personalized digital television: targeting programs to individual viewers. Berlin: Springer, 331 pp. Google Scholar
  3. 3.
    PHAROS (Platform for searcHing of Audiovisual Resources across Online Spaces), an Integrated Project co-financed by the European Union. http://www.pharos-audiovisual-search.eu/. Accessed by September 10, 2009.
  4. 4.
    Multimedia Understanding through Semantics, Computation and Learning (MUSCLE). http://muscle.ercim.org/. Accessed by September 10, 2009.
  5. 5.
    Kawai, Y., Sumiyoshi, H., & Yagi, N. (2007). Shot boundary detection at TRECVID 2007. In Proc. of TRECVID Workshop. Google Scholar
  6. 6.
    Ekin, A., Tekalp, A. M., & Mehrotra, R. (2003). Automatic soccer video analysis and summarization. IEEE Transactions on Image Processing, 12(7), 796–807. CrossRefGoogle Scholar
  7. 7.
    TREC Video Retrieval Evaluation, http://www-nlpir.nist.gov/projects/trecvid/. Accessed by September 10, 2009.
  8. 8.
    Papadopoulos, G. T., Saathoff, C., Grzegorzek, M., Mezaris, V., Kompatsiaris, I., Staab, S., & Strintzis, M. G. (2009). Comparative evaluation of spatial context techniques for semantic image analysis. In 10th workshop on image analysis for multimedia interactive services (WIAMIS’09) (pp. 161–164). May 2009. CrossRefGoogle Scholar
  9. 9.
    Chen, Z.-S., & Jang, J.-S. (2009). On the use of anti-word models for audio music annotation and retrieval. IEEE Transactions on Audio, Speech and Language Processing, 17(8), 1547–1556. CrossRefGoogle Scholar
  10. 10.
    Dang, H. T., & Owczarzak, K. (2008). Overview of the TAC 2008 update summarization task. In 2008 text analysis conference (TAC 2008). Gaithersburg, Maryland USA, November 17–19, 2008. Google Scholar
  11. 11.
    Zhang, Y.-J. (2006). Advances in image and video segmentation. Hershey: Idea Group Pub. Google Scholar
  12. 12.
    Leexoo video search. http://adgrid.leexoo.com/. Accessed by September 10, 2009.
  13. 13.
  14. 14.
    Iulio, M. D., & Messina, A. (2008). Use of probabilistic clusters supports for broadcast news segmentation. In Proceeding of 19th international conference on database and expert systems application (pp. 600–604). CrossRefGoogle Scholar
  15. 15.
    Blinkx. http://www.blinkx.com/. Accessed by September 10, 2009.
  16. 16.
    Bing. http://cn.bing.com/. Accessed by September 10, 2009.
  17. 17.
    YouTube. http://www.youtube.com/. Accessed by September 10, 2009.
  18. 18.
    Videosphere. http://www.netexplorateur.org/videospheres/english/. Accessed by September 10, 2009.
  19. 19.
    Mfula, H. (2008). Highlights extraction from unscripted video. T61.6030, Multimedia retrieval seminar presentation 04.04.2008. Google Scholar
  20. 20.
    Joyce, R. A., & Liu, B. (2006). Temporal segmentation of video using frame and histogram space. IEEE Transactions on Multimedia, 8(1), 130–140. CrossRefGoogle Scholar
  21. 21.
    Over, P., Awad, G., Rose, T., Fiscus, J., Kraaij, W., & Smeaton, A. F. (2008). TRECVID 2008-goals, tasks, data, evaluation mechanisms and metrics. In ACM multimedia 2008. Vancouver, Canada, October, 2008. Google Scholar
  22. 22.
    2424actu. http://www.2424actu.fr/actualite-la-une. Accessed by September 10, 2009.
  23. 23.
    Voxalead News. http://voxaleadnews.labs.exalead.com/. Accessed by September 10, 2009.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.France Telecom R&D (Orange Labs) BeijingBeijingChina

Personalised recommendations