Electronic Commerce Research

, Volume 8, Issue 4, pp 235–253 | Cite as

GreedEx—a scalable clearing mechanism for utility computing



Scheduling becomes key in dynamic and heterogeneous utility computing settings. Market-based scheduling offers to increase efficiency of the resource allocation and provides incentives to offer computer resources and services. Current market mechanisms, however, are inefficient and computationally intractable in large-scale settings.

The contribution of this paper is the proposal as well as analytical and numerical evaluation of GreedEx, an exchange for clearing utility computing markets, based on a greedy heuristic, that does achieve a distinct trade-off: GreedEx obtains fast and near-optimal resource allocations while generating prices that are truthful on the demand-side and approximately truthful on the supply-side.


Market-based scheduling Scalable heuristic Truthful 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rappa, M. A. (2004). The utility business model and the future of computing services. IBM Systems Journal, 43(1), 32–42. CrossRefGoogle Scholar
  2. 2.
    Carr, N. G. (2003). IT doesn’t matter. Harvard Business Review, 811(5), 41–53. Google Scholar
  3. 3.
    Sun Microsystems (2007). http://www.sun.com/service/sungrid/overview.jsp, visited March 2, 2007.
  4. 4.
    Amazon.com (2007). http://www.amazon.com, visited March 2, 2007.
  5. 5.
    Waldspurger, C., Hogg, T., Huberman, B. A., Kephart, J. O., & Stornetta, W. S. (1992). Spawn: a distributed computational economy. IEEE Transactions on Software Engineering, 18(2), 103–117. CrossRefGoogle Scholar
  6. 6.
    Chun, B., & Culler, D. E. (1999). Market-based proportional resource sharing for clusters. Millenium Project Research Report. Google Scholar
  7. 7.
    Regev, O., & Nisan, N. (1998). The POPCORN market – an online market for computational resources. In: Proceedings of the 1 st international conference on information and computation economies, New York, USA, pp. 148–157. Google Scholar
  8. 8.
    Foster, I. (2005). Globus toolkit version 4: software for service-oriented systems. In: Proceedings of the IFIP international conference on network and parallel computing, Beijing, China, pp. 2–13. Google Scholar
  9. 9.
    Schnizler, B., Neumann, D., Veit, D., & Weinhardt, C. (2008). Trading grid services – a multi-attribute combinatorial approach. European Journal of Operational Research, 187(3), 943–961. CrossRefGoogle Scholar
  10. 10.
    AuYoung, A., Chun, B. N., Snoeren, A. C., & Vahdat, A. (2004). Resource allocation in federated distributed computing infrastructures. In: Proceedings of the 1 st workshop on operating system and architectural support for the on-demand IT infrastructure, Boston, MA, USA. Google Scholar
  11. 11.
    Parkes, D. C., Kalagnanam, J., & Eso, M. (2001). Achieving budget-balance with Vickrey-based payment schemes in combinatorial exchanges. IBM Research Report RC 22218 W0110-065. Google Scholar
  12. 12.
    Bapna, R., Das, S., Garfinkel, R., & Stallaert, J. (2008). A market design for grid computing. INFORMS Journal of Computing, 20(1), 100–111. CrossRefGoogle Scholar
  13. 13.
    Lehmann, D., O’Callaghan, L. I., & Shoham, Y. (2002). Truth revelation in approximately efficient combinatorial auctions. Journal of the ACM, 49(5), 577–602. CrossRefGoogle Scholar
  14. 14.
    Mu’alem, A., & Nisan, N. (2002). Truthful approximation mechanisms for restricted combinatorial auctions. In: Proceedings of the 18 th national conference on artificial intelligence (AAAI-02), Edmonton, Alberta, Canada. Google Scholar
  15. 15.
    Stößer, J., Neumann, D., & Anandasivam, A. (2007). A truthful heuristic for efficient scheduling in network-centric grid OS. In: Proceedings of the 15 th European conference on information systems (ECIS), St. Gallen, Switzerland. Google Scholar
  16. 16.
    Degermark, M., Kohler, T., Pink, S., & Schelen, O. (1997). Advance reservations for predictive service in the Internet. ACM/Springer Verlag Journal on Multimedia Systems, 5(3), 177–186. CrossRefGoogle Scholar
  17. 17.
    Smith, W., Foster, I., & Taylor, V. (1998). Predicting application run times using historical information. In: Proceedings of the IPPS/SPDP 1998 workshop on job scheduling strategies for parallel processing, Orlando, FL, USA. Google Scholar
  18. 18.
    MacKie-Mason, J. K., & Wellman, M. P. (2006). Automated markets and trading agents. In L. Tesfatsion & K. L. Judd (Eds.), Handbook of computational economics, vol. 2: Agent-based computational economics. Amsterdam: North-Holland. Google Scholar
  19. 19.
    Neumann, D., Lamparter, S., & Schnizler, B. (2006). Automated bidding for trading grid services. In: Proceedings of the 14 th European conference on information systems (ECIS), Gothenburg, Sweden. Google Scholar
  20. 20.
    Martello, S., & Toth, P. (1990). Knapsack problems. Chichester: Wiley. Google Scholar
  21. 21.
    Böttcher, J., Drexl, A., Kolisch, R., & Salewski, F. (1999). Project scheduling under partially renewable resource constraints. Management Science, 45(4), 543–559. CrossRefGoogle Scholar
  22. 22.
    Feitelson, D. G. (2002). Workload modeling for performance evaluation. In Lecture notes in computer science : Vol. 2459. Performance evaluation of complex systems: techniques and tools (pp. 114–141). Berlin: Springer. CrossRefGoogle Scholar
  23. 23.
    Sandholm, T., Suri, S., Gilpin, A., & Levine, D. (2001). CABOB: a fast optimal algorithm for combinatorial auctions. In: Proceedings of the 17 th international joint conference on artificial intelligence, Seattle, WA, USA. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute of Information Systems and Management (IISM)Universität Karlsruhe (TH)KarlsruheGermany
  2. 2.Albert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations