Equilibrium Paths for von Mises Trusses in Finite Elasticity


This paper deals with the equilibrium problem of von Mises trusses in nonlinear elasticity. A general loading condition is considered and the rods are regarded as hyperelastic bodies composed of a homogeneous isotropic material. Under the hypothesis of homogeneous deformations, the finite displacement fields and deformation gradients are derived. Consequently, the Piola-Kirchhoff and Cauchy stress tensors are computed by formulating the boundary-value problem. The equilibrium in the deformed configuration is then written and the stability of the equilibrium paths is assessed through the energy criterion. An application assuming a compressible Mooney-Rivlin material is performed. The equilibrium solutions for the case of vertical load present primary and secondary branches. Although, the stability analysis reveals that the only form of instability is the snap-through phenomenon. Finally, the finite theory is linearized by introducing the hypotheses of small displacement and strain fields. By doing so, the classical solution of the two-bar truss in linear elasticity is recovered.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Another phenomenon that may interest such mechanical systems is the bistable mechanism, which has been recently analyzed by means of elastica theory (see, e.g., [1, 6, 7, 9]).

  2. 2.

    Other studies on the behavior of rubber-like materials in which a similar stored energy function is assumed can be found in [14, 24, 28] and [31].

  3. 3.

    This is a convenient position that was used, for instance, in [12, 25] and [27].


  1. 1.

    Armanini, C., Dal Corso, F., Misseroni, D., Bigoni, D.: From the elastica compass to the elastica catapult: an essay on the mechanics of soft robot arm. Proc. R. Soc. A 473(2198), 20160, 870 (2017)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bažant, Z.P., Cedolin, L.: Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. World Scientific, Singapore (1991)

    Google Scholar 

  3. 3.

    Bazzucchi, F., Manuello, A., Carpinteri, A.: Interaction between snap-through and Eulerian instability in shallow structures. Int. J. Non-Linear Mech. 88, 11–20 (2017)

    ADS  Article  Google Scholar 

  4. 4.

    Bellini, P.X.: The concept of snap-buckling illustrated by a simple model. Int. J. Non-Linear Mech. 7(6), 643–650 (1972)

    ADS  Article  Google Scholar 

  5. 5.

    Faa di Bruno, F.: Sullo sviluppo delle funzioni. Ann Sci. Mat. Fis. 6, 479–480 (1855)

    Google Scholar 

  6. 6.

    Camescasse, B., Fernandes, A., Pouget, J.: Bistable buckled beam: elastica modeling and analysis of static actuation. Int. J. Solids Struct. 50(19), 2881–2893 (2013)

    Article  Google Scholar 

  7. 7.

    Cazzolli, A., Dal Corso, F.: Snapping of elastic strips with controlled ends. Int. J. Sol. Struct. 162, 285–303 (2019)

    Article  Google Scholar 

  8. 8.

    Ciarlet, P.G., Geymonat, G.: Sur les lois de comportement en élasticité non linéaire compressible. C. R. Acad. Sci. Paris Sér. II 295, 423–426 (1982)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Frazier, M.J., Kochmann, D.M.: Band gap transmission in periodic bistable mechanical systems. J. Sound Vib. 388, 315–326 (2017)

    ADS  Article  Google Scholar 

  10. 10.

    Gent, A.: A new constitutive relation for rubber. Rubber Chem. Technol. 69(1), 59–61 (1996)

    Article  Google Scholar 

  11. 11.

    Kwasniewski, L.: Complete equilibrium paths for Mises trusses. Int. J. Non-Linear Mech. 44(1), 19–26 (2009)

    ADS  Article  Google Scholar 

  12. 12.

    Lanzoni, L., Tarantino, A.M.: Damaged hyperelastic membranes. Int. J. Non-Linear Mech. 60, 9–22 (2014)

    ADS  Article  Google Scholar 

  13. 13.

    Lanzoni, L., Tarantino, A.M.: Equilibrium configurations and stability of a damaged body under uniaxial tractions. Z. Angew. Math. Phys. 66(1), 171–190 (2015)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Lanzoni, L., Tarantino, A.M.: A simple nonlinear model to simulate the localized necking and neck propagation. Int. J. Non-Linear Mech. 84, 94–104 (2016)

    ADS  Article  Google Scholar 

  15. 15.

    Lanzoni, L., Tarantino, A.M.: Finite anticlastic bending of hyperelastic solids and beams. J. Elast. 131(2), 137–170 (2018)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Ligaro, S.S., Valvo, P.S.: Large displacement analysis of elastic pyramidal trusses. Int. J. Solids Struct. 43(16), 4867–4887 (2006)

    Article  Google Scholar 

  17. 17.

    Mises, R.: Über die stabilitätsprobleme der elastizitätstheorie. Z. Angew. Math. Mech. 3(6), 406–422 (1923)

    Article  Google Scholar 

  18. 18.

    Mises, R., Ratzersdorfer, J.: Die Knicksicherheit von Fachwerken. Z. Angew. Math. Mech. 5(3), 218–235 (1925)

    Article  Google Scholar 

  19. 19.

    Ogden, R.W.: Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 567–583 (1972)

  20. 20.

    Pecknold, D., Ghaboussi, J., Healey, T.: Snap-through and bifurcation in a simple structure. J. Eng. Mech. 111(7), 909–922 (1985)

    Article  Google Scholar 

  21. 21.

    Psotny, M., Ravinger, J.: Von Mises truss with imperfection. Slov. J. Civ. Eng. 11, 1–7 (2003)

    Google Scholar 

  22. 22.

    Rezaiee-Pajand, M., Naghavi, A.: Accurate solutions for geometric nonlinear analysis of eight trusses. Mech. Based Des. Struct. Mach. 39(1), 46–82 (2011)

    Article  Google Scholar 

  23. 23.

    Savi, M.A., Pacheco, P.M., Braga, A.M.: Chaos in a shape memory two-bar truss. Int. J. Non-Linear Mech. 37(8), 1387–1395 (2002)

    Article  Google Scholar 

  24. 24.

    Tarantino, A.M.: Thin hyperelastic sheets of compressible material: field equations, airy stress function and an application in fracture mechanics. J. Elast. 44(1), 37–59 (1996)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Tarantino, A.M.: Nonlinear fracture mechanics for an elastic Bell material. Q. J. Mech. Appl. Math. 50(3), 435–456 (1997)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Tarantino, A.M.: The singular equilibrium field at the notch-tip of a compressible material in finite elastostatics. Z. Angew. Math. Phys. 48(3), 370–388 (1997)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Tarantino, A.M.: On the finite motions generated by a mode I propagating crack. J. Elast. 57(2), 85–103 (1999)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Tarantino, A.M.: Crack propagation in finite elastodynamics. Math. Mech. Solids 10(6), 577–601 (2005)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Tarantino, A.M.: Homogeneous equilibrium configurations of a hyperelastic compressible cube under equitriaxial dead-load tractions. J. Elast. 92(3), 227 (2008)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Tarantino, A.M.: Equilibrium paths of a hyperelastic body under progressive damage. J. Elast. 114(2), 225–250 (2014)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Tarantino, A.M., Nobili, A.: Finite homogeneous deformations of symmetrically loaded compressible membranes. Z. Angew. Math. Phys. 58(4), 659–678 (2007)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Ziegler, H.: Principles of Structural Stability, vol. 35. Birkhäuser, Basel (2013)

    Google Scholar 

Download references


The authors acknowledge funding from the Italian Ministry MIUR-PRIN voce COAN code 2015JW9NJT.

Author information



Corresponding author

Correspondence to Matteo Pelliciari.

Ethics declarations

Compliance with Ethical Standards

Conflict of Interest: The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pelliciari, M., Tarantino, A.M. Equilibrium Paths for von Mises Trusses in Finite Elasticity. J Elast 138, 145–168 (2020). https://doi.org/10.1007/s10659-019-09731-1

Download citation


  • Finite elasticity
  • Equilibrium
  • von Mises truss
  • Stability
  • Snap-through

Mathematics Subject Classification

  • 74B20
  • 74G05