Skip to main content
Log in

Finite Third-order Gradient Elasticity and Thermoelasticity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

A constitutive format for the third-order gradient elasticity is suggested. It includes both isotropic and anisotropic non-linear behavior under finite deformations. Appropriate invariant stress and strain variables are introduced, which allow for reduced forms of the elastic energy law that identically fulfill the objectivity requirement. After working out the transformation behavior under a change of the reference placement, the symmetry transformations for third-order materials can be introduced. After the mechanical third-order theory, an extension to thermoelasticity is given, and necessary and sufficient conditions are derived from the Clausius-Duhem inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aifantis, E.: The physics of plastic deformation. Int. J. Plast. 3, 211–247 (1987)

    Article  Google Scholar 

  2. Bertram, A.: An alternative approach to finite plasticity based on material isomorphisms. Int. J. Plast. 52, 353–374 (1998)

    MATH  Google Scholar 

  3. Bertram, A.: Elasticity and Plasticity of Large Deformations: An Introduction. Springer, Berlin (2005, 2008, 2012)

    MATH  Google Scholar 

  4. Bertram, A.: Finite gradient elasticity and plasticity: a constitutive thermodynamical framework. Contin. Mech. Thermodyn. 27(6), 1039–1058 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bertram, A.: Finite gradient elasticity and plasticity: a constitutive mechanical framework. Contin. Mech. Thermodyn. 27(6), 1039–1058 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bertram, A. (ed.): Compendium on Gradient Materials, Otto-von-Guericke-Universität Magdeburg 2017, Version May 2017. http://www.ifme.ovgu.de/ifme_media/FL/Publikationen/Compendium+on+Gradient+Materials_May+2017.pdf (2017). Latest Version: http://www.redaktion.tu-berlin.de/fileadmin/fg49/publikationen/bertram/Compendium_on_Gradient_Materials_Dec_2017.pdf

  7. Bertram, A., Forest, S.: Mechanics based on an objective power functional. Tech. Mech. 27(1), 1–17 (2007)

    Google Scholar 

  8. Bertram, A., Forest, S.: The thermodynamics of gradient elastoplasticity. Contin. Mech. Thermodyn. 26, 269–286 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bertram, A., Glüge, R.: Gradient materials with internal constraints. Math. Mech. Complex Syst. 4(1), 1–15 (2016). https://doi.org/10.2140/memocs.2016.4.1

    Article  MathSciNet  MATH  Google Scholar 

  10. Bertram, A., Krawietz, K.: On the introduction of thermoplasticity. Acta Mech. 223(10), 2257–2268 (2012)

    Article  MathSciNet  Google Scholar 

  11. Bertram, A., Svendsen, B.: On material objectivity and reduced constitutive equations. Arch. Mech. 53(6), 653–675 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Cordero, N.M., Forest, S., Busso, E.P.: First vs. second gradient of strain theory for capillarity effects in an elastic fluid at small length scales. Comput. Mater. Sci. 50, 1299–1304 (2011)

    Article  Google Scholar 

  13. Cordero, N.M., Forest, S., Busso, E.P.: Second strain gradient elasticity of nano-objects. J. Mech. Phys. Solids 97, 92–124 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Cross, J.J.: Mixtures of fluids and isotropic solids. Arch. Mech. 25(6), 1025–1039 (1973)

    MathSciNet  MATH  Google Scholar 

  15. de Leon, M., Epstein, M.: The geometry of uniformity in second-grade elasticity. Acta Mech. 114, 217–224 (1996)

    Article  MathSciNet  Google Scholar 

  16. Dillon, O.W., Kratochvil, J.: A strain gradient theory of plasticity. Int. J. Solids Struct. 6, 1513–1533 (1970)

    Article  Google Scholar 

  17. Elzanowski, M., Epstein, M.: The symmetry group of second-grade materials. Int. J. Non-Linear Mech. 27(4), 635–638 (1992)

    Article  MathSciNet  Google Scholar 

  18. Eremeyev, V., Pietraszkiewicz, W.: Local symmetry group in the general theory of elastic shells. J. Elast. 85(2), 125–152 (2006)

    Article  MathSciNet  Google Scholar 

  19. Eremeyev, V., Pietraszkiewicz, W.: Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids Struct. 49(14), 1993–2005 (2012)

    Article  Google Scholar 

  20. Fleck, N.A., Müller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)

    Article  Google Scholar 

  21. Forest, S., Sievert, R.: Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003)

    Article  Google Scholar 

  22. Gluege, R., Kalisch, J., Bertram, A.: The eigenmodes in isotropic strain gradient elasticity. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials, pp. 163–178. Springer, Berlin (2016)

    Chapter  Google Scholar 

  23. Gurtin, M.E.: Thermodynamics and the possibility of spacial interaction in elastic materials. Arch. Ration. Mech. Anal. 19(5), 339–352 (1965)

    Article  Google Scholar 

  24. Javili, A., dell’Isola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61(12), 2381–2401 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  25. Lazar, M., Maugin, G.M.: Dislocations in gradient elasticity revisited. Proc. R. Soc. A 462, 3465–3480 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  26. Lazar, M., Maugin, G.M., Aifantis, E.C.: Dislocations in second strain gradient elasticity. Int. J. Solids Struct. 43, 1787–1817 (2006)

    Article  Google Scholar 

  27. Ma, Q., Clarke, D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853–868 (1995)

    Article  ADS  Google Scholar 

  28. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  29. Münch, I., Neff, P.: Rotational invariance conditions in elasticity, gradient elasticity and its connection to isotropy. arXiv:1603.06153 (2016). Preprint, submitted

    Article  MathSciNet  Google Scholar 

  30. Murdoch, A.I.: Symmetry considerations for materials of second grade. J. Elast. 9(1), 43–50 (1979)

    Article  MathSciNet  Google Scholar 

  31. Murdoch, A., Cohen, H.: Symmetry considerations for material surfaces. Arch. Ration. Mech. Anal. 72(1), 61–98 (1979)

    Article  MathSciNet  Google Scholar 

  32. Perzyna, P.: A gradient theory of rheological materials with internal structural changes. Arch. Mech. 23(6), 845–850 (1971)

    MATH  Google Scholar 

  33. Polizzotto, C.: A second strain gradient elasticity theory with second velocity gradient inertia—Part I: Constitutive equations and quasi-static behavior. Int. J. Solids Struct. 50(24), 3749–3765 (2013)

    Article  Google Scholar 

  34. Polizzotto, C.: Surface effects, boundary conditions and evolution laws within second strain gradient plasticity. Int. J. Plast. 60, 197–216 (2014)

    Article  Google Scholar 

  35. Reiher, J.C., Giorgio, I., Bertram, A.: Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. J. Eng. Mech. 143(2), 04016112 (2016). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001184

    Article  Google Scholar 

  36. Svendsen, B., Neff, P., Menzel, A.: On constitutive and configurational aspects of models for gradient continua with microstructure. Z. Angew. Math. Mech. 89(8), 687–697 (2009)

    Article  MathSciNet  Google Scholar 

  37. Toupin, R.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  Google Scholar 

  38. Truesdell, C.A., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/3. Springer, Berlin (1965)

    Google Scholar 

  39. Wu, C.H.: Cohesive elasticity and surface phenomena. Q. Appl. Math. 50(1), 73–103 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  40. Zbib, H.M., Aifantis, E.C.: On the postlocalization behavior of plastic deformation. Mechanics of Microstructures. MM Report No. I, Michigan Technological University, Houghton, MI (1987)

Download references

Acknowledgements

Jörg Christian Reiher’s position as a PhD-student has been funded by the German Research Foundation, Graduiertenkolleg 1554: Micro-Macro-Interactions in structured Media and Particle Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Christian Reiher.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiher, J.C., Bertram, A. Finite Third-order Gradient Elasticity and Thermoelasticity. J Elast 133, 223–252 (2018). https://doi.org/10.1007/s10659-018-9677-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-018-9677-2

Keywords

Mathematics Subject Classification (2000)

Navigation