Journal of Elasticity

, Volume 127, Issue 1, pp 103–113 | Cite as

Enhancing the Electro-Mechanical Response of Stacked Dielectric Actuators

  • Noy Cohen


Dielectric polymer films subjected to an electric field reduce in thickness and expand in area. A pile up configuration of such films, also known as a stacked dielectric actuator, is capable of exhibiting contractive deformations while subjected to external tensile forces. This work analyzes the capabilities of the stacked actuator according to a new microscopically motivated approach which suggests that the macroscopic response is determined by four microscopic factors—the length of the polymer chains, the local behavior of the monomers, the intensity of the local dipole and the chain-density. With the aim of enhancing the actuators performance, a specific local behavior is assumed and the influence of the remaining three quantities is studied. It is shown that the actuation can be significantly improved with appropriate micro-structural changes. Interestingly, this work demonstrates that these micro-structural alterations depend on the envisaged application.


Electro-active polymers Polymer micro-structure Smart materials Stacked actuators 

Mathematics Subject Classification

74B20 74F15 74G05 74M05 



The author gratefully acknowledges G. deBotton for insightful comments and discussion.


  1. 1.
    Blythe, T., Bloor, D.: Electrical Properties of Polymers, 2nd edn. Cambridge University Press, Cambridge (2008) Google Scholar
  2. 2.
    Bozlar, M., Punckt, C., Korkut, S., Zhu, J., Foo, C.C., Suo, Z., Aksay, I.A.: Dielectric elastomer actuators with elastomeric electrodes. Appl. Phys. Lett. 101(9), 091907 (2012) ADSCrossRefGoogle Scholar
  3. 3.
    Cohen, N., deBotton, G.: The electromechanical response of polymer networks with long-chain molecules. Math. Mech. Solids 20(6), 721–728 (2015). doi: 10.1177/1081286514550574 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cohen, N., deBotton, G.: Electromechanical interplay in deformable dielectric elastomer networks. Phys. Rev. Lett. 116, 208303 (2016). doi: 10.1103/PhysRevLett.116.208303 ADSCrossRefGoogle Scholar
  5. 5.
    Cohen, N., Dayal, K., deBotton, G.: Electroelasticity of polymer networks. J. Mech. Phys. Solids (2016). doi: 10.1016/j.jmps.2016.03.022 MathSciNetGoogle Scholar
  6. 6.
    Cohen, N., Menzel, A., deBotton, G.: Towards a physics-based multiscale modelling of the electro-mechanical coupling in electro-active polymers. Proc. R. Soc., Math. Phys. Eng. Sci. 472(2186), 20150712 (2016). doi: 10.1098/rspa.2015.0462 CrossRefGoogle Scholar
  7. 7.
    Huang, C., Zhang, Q.M., deBotton, G., Bhattacharya, K.: All-organic dielectric-percolative three-component composite materials with high electromechanical response. Appl. Phys. Lett. 84, 4391–4393 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    Joglekar, M.M.: An energy-based approach to extract the dynamic instability parameters of dielectric elastomer actuators. J. Appl. Mech. 81(9), 091010 (2014) ADSCrossRefGoogle Scholar
  9. 9.
    Joglekar, M.M.: Dynamic-instability parameters of dielectric elastomer actuators with equal biaxial prestress. AIAA J. 53(10), 3129–3133 (2015) ADSCrossRefGoogle Scholar
  10. 10.
    Kofod, G.: The static actuation of dielectric elastomer actuators: how does pre-stretch improve actuation? J. Phys. D, Appl. Phys. 41(21), 215405 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    Kovacs, G., Düring, L.: Contractive Tension Force Stack Actuator Based on Soft Dielectric EAP. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, p. 72870A. SPIE, Bellingham (2009) Google Scholar
  12. 12.
    Kovacs, G., Lochmatter, P., Wissler, M.: An arm wrestling robot driven by dielectric elastomer actuators. Smart Mater. Struct. 16(2), S306 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    Kovacs, G., Düring, L., Michel, S., Terrasi, G.: Stacked dielectric elastomer actuator for tensile force transmission. Sens. Actuators A, Phys. 155(2), 299–307 (2009) CrossRefGoogle Scholar
  14. 14.
    Lotz, P., Matysek, M., Schlaak, H.F.: Fabrication and application of miniaturized dielectric elastomer stack actuators. IEEE/ASME Trans. Mechatron. 16(1), 58–66 (2011) CrossRefGoogle Scholar
  15. 15.
    Madsen, F.B., Daugaard, A.E., Hvilsted, S., Skov, A.L.: The current state of silicone-based dielectric elastomer transducers. Macromol. Rapid Commun. 37(5), 378–413 (2016). doi: 10.1002/marc.201500576 CrossRefGoogle Scholar
  16. 16.
    McKay, T., O’Brien, B., Calius, E., Anderson, L.: An integrated, self-priming dielectric elastomer generator. Appl. Phys. Lett. 97, 062911 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100 %. Science 287(5454), 836–839 (2000) ADSCrossRefGoogle Scholar
  18. 18.
    Rudykh, S., Lewinstein, A., Uner, G., deBotton, G.: Analysis of microstructural induced enhancement of electromechanical coupling in soft dielectrics. Appl. Phys. Lett. 102(15), 151905 (2013) ADSCrossRefGoogle Scholar
  19. 19.
    Shmuel, G.: Manipulating torsional motions of soft dielectric tubes. J. Appl. Phys. 117(17), 174902 (2015) ADSCrossRefGoogle Scholar
  20. 20.
    Stockmayer, W.H.: Dielectric dispersion in solutions of flexible polymers. Pure Appl. Chem. 15(539), 2816 (1967) Google Scholar
  21. 21.
    Suo, Z., Zhu, J.: Dielectric elastomers of interpenetrating networks. Appl. Phys. Lett. 95(23), 232909 (2009). doi: 10.1063/1.3272685 ADSCrossRefGoogle Scholar
  22. 22.
    Treloar, L.R.G.: The Physics of Rubber Elasticity. Clarendon Press, Oxford (1975) MATHGoogle Scholar
  23. 23.
    Tutcuoglu, A., Majidi, C.: Energy harvesting with stacked dielectric elastomer transducers: nonlinear theory, optimization, and linearized scaling law. Appl. Phys. Lett. 105(24), 241905 (2014). doi: 10.1063/1.4904473 ADSCrossRefGoogle Scholar
  24. 24.
    Zhang, X., Lowe, C., Jahne, B., Kovacs, G.: Dielectric elastomers in actuator technology. Adv. Eng. Mater. 7(5), 361–367 (2005). doi: 10.1002/adem.200500066 CrossRefGoogle Scholar
  25. 25.
    Zhao, X., Suo, Z.: Electromechanical instability in semicrystalline polymers. Appl. Phys. Lett. 95(3), 031904 (2009). doi: 10.1063/1.3186078 ADSCrossRefGoogle Scholar
  26. 26.
    Zhao, X., Suo, Z.: Theory of dielectric elastomers capable of giant deformation of actuation. Phys. Rev. Lett. 104, 178302 (2010). doi: 10.1103/PhysRevLett.104.178302 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Dept. of Mechanical EngineeringBen-Gurion UniversityBe’er ShevaIsrael
  2. 2.Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations